Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Đồng Tháp

Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Đồng Tháp Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; đề thi được biên soạn theo hình thức đề thi 100% trắc nghiệm, đề thi có đáp án và tóm tắt lời giải (lưu ý: đây là mã đề GỐC nên toàn bộ đáp án đều là A). Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Đồng Tháp : + Từ một tấm tôn hình quạt OAB có 2 120 o OA AOB người ta xác định hai điểm M N lần lượt là trung điểm của OA OB rồi cắt tấm tôn theo hình chữ nhật MNPQ (như hình vẽ). Dùng hình chữ nhật đó tạo thành mặt xung quanh của một hình trụ với đường sinh MQ NP trùng khít nhau. Khối trụ tương ứng được tạo thành có thể tích là? + Trong không gian với hệ tọa độ Oxyz, cho a(1;-1;0) và hai điểm A(−4;7;3), B(4;4;5). Hai điểm M N thay đổi thuộc mặt phẳng Oxy sao cho MN cùng hướng a và MN = 5√2. Giá trị lớn nhất của |AM – BN| bằng? + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;2), B(-1;0;4), C(0;-1;3) và điểm M thuộc mặt cầu (S): x2 + y2 + (z – 1)2 = 1. Nếu biểu thức MA2 + MB2 + MC2 đạt giá trị nhỏ nhất thì độ đài đoạn AM bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG cấp tỉnh lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng. [ads] + Trong mặt phẳng Oxy, cho đường tròn (I) có hai đường kính AB và MN với A B (1;3), (3; -1). Tiếp tuyến của (I) tại B cắt các đường thẳng AM và AN lần lượt tại E và F. Tìm tọa độ trực tâm H của tam giác MEF sao cho H nằm trên đường thẳng d: x – y + 6 = 0 và có hoành độ dương. + Tìm tất cả các giá trị của m để đồ thị hàm số y = x^3 – 3mx + 1 có hai điểm cực trị A, B sao cho diện tích ΔIAB bằng 8√2.
Đề thi thành lập đội tuyển HSG Toán 12 dự thi Quốc gia năm học 2016 2017 sở GD và ĐT Bình Thuận
Đề thi thành lập đội tuyển HSG Toán 12 THPT dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 4 bài toán tự luận, có lời giải chi tiết.
Đề thi chọn HSG Toán 12 cấp tỉnh năm học 2016 2017 sở GD và ĐT Bình Thuận
Đề thi chọn HSG Toán 12 cấp tỉnh năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số câu trong đề thi : + Trong một buổi tiệc có 10 chàng trai, mỗi chàng trai dẫn theo một cô gái. a) Có bao nhiêu cách xếp họ ngồi thành một hàng ngang sao cho các cô gái ngồi cạnh nhau, các chàng trai ngồi cạnh nhau và có một chàng trai ngồi cạnh cô gái mà anh ta dẫn theo? b) Ký hiệu các cô gái là G1, G2, … G10. Xếp hết 20 người ngồi thành một hàng ngang sao cho các điều kiện sau được đồng thời thỏa mãn: 1. Thứ tự ngồi của các cô gái, xét từ trái sang phải là G1, G2, … G10. 2. Giữa G1 và G2 có ít nhất 2 chàng trai. 3. Giữa G8 và G9 có ít nhất 1 chàng trai và nhiều nhất 3 chàng trai. Hỏi có tất cả bao nhiêu cách xếp như vậy + Cho tam giác ABC với I là tâm đường tròn nội tiếp và M là một điểm nằm trong tam giác. Gọi A1, B1, C1 là các điểm đối xứng với điểm M lần lượt qua các đường thẳng A1, B1, C1. Chứng minh rằng các đường thẳng A1, B1, C1 đồng quy.
Đề thi chọn HSG văn hóa cấp cụm môn Toán 12 năm học 2016 - 2017 cụm THPT Lạng Giang - Bắc Giang
Đề thi có lời giải chi tiết. Trích một số câu trong đề thi: + Một hộp đựng 50 quả cầu được đánh số theo thứ tự từ 1 đến 50. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Tính xác suất để tích 3 số ghi trên 3 quả cầu lấy được là một số chia hết cho 8. + Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc hạ từ A’ xuống (ABC) là trọng tâm của tam giác ABC. Mặt phẳng (BCC’B’) hợp với mặt phẳng đáy góc 45 độ a) Tính thể tích khối lăng trụ ABC.A’B’C’ b) Gọi I, J lần lượt là trung điểm của đoạn thẳng AB và CC’. Tính khoảng cách giữa hai đường thẳng AA’ và IJ