Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề Toán 12 ôn thi THPTQG - Lư Sĩ Pháp (Tập 1 Giải tích)

Tài liệu gồm 153 trang tuyển tập lý thuyết, phân dạng toán và bài tập trắc nghiệm có đáp án các chuyên đề Toán 12 phần Giải tích ôn thi THPT Quốc gia, tài liệu được biên soạn bởi thầy Lư Sĩ Pháp. CHUYÊN ĐỀ 1 . ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ §1. SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho + Dạng 2. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó + Dạng 3. Tìm tham số m ∈ R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (α; β) §2. CỰC TRỊ CỦA HÀM SỐ + Dạng 1. Tìm các điểm cực trị của hàm số y = f(x) + Dạng 2. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0 + Dạng 3. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán §3. GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ + Dạng 1. Tìm GTLN – GTNN của hàm số trên đoạn [a; b]. Xét hàm số y = f(x) + Dạng 2. Tìm GTLN – GTNN của hàm số chứa căn thức + Dạng 3. Tìm GTLN – GTNN của hàm số trên một khoảng (a; b) + Dạng 4. Ứng dụng vào bài toán thực tế §4. ĐƯỜNG TIỆM CẬN + Dạng 1: Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên + Dạng 2: Tìm các đường tiệm cận của hàm số nhất biến + Dạng 3: Tìm các đường tiệm đứng của hàm số khác §5. KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ §6. MỘT SỐ BÀI TOÁN THƯỜNG GẶP VỀ ĐỒ THỊ + Dạng 1. Biện luận số giao điểm của hai đồ thị + Dạng 2. Biện luận số nghiệm của phương trình bằng đồ thị + Dạng 3. Viết phương trình tiếp tuyến + Dạng 4. Sự tiếp xúc của các đường cong [ads] CHUYÊN ĐỀ 2 . HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LÔGARIT. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH MŨ – LÔGARIT + Dạng 1. Xét tính đúng sai của một mệnh đề + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit + Dạng 5. Tập xác định của hàm số + Dạng 6. Tính đạo hàm + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế CHUYÊN ĐỀ 3 . NGUYÊN HÀM – TÍCH PHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ 4 . SỐ PHỨC 1. Số phức 2. Các phép toán trên số phức 3. Mối liên hệ giữa z và z‾ 4. Phương trình bậc hai với hệ số thực 5. Cực trị số phức 6. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z| + Dạng 1. Cho số phức z thỏa mãn |z – (a + bi)| = R, R > 0. Tìm giá trị nhỏ nhất, lớn nhất của z + Dạng 2. Cho số phức z thỏa mãn |z – z1| = r1, r1 > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z – z2| + Dạng 3. Cho số phức z thỏa mãn |z – z1| + |z – z2| = k, k > 0. Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = |z| + Dạng 4. Cho hai số phức z1, z2 thỏa mãn z1 + z2 = m + ni và |z1 – z2| = p > 0. Tìm giá trị lớn nhất của P = |z1| + |z2| Xem thêm :  Chuyên đề Toán 11 ôn thi THPT Quốc gia – Lư Sĩ Pháp

Nguồn: toanmath.com

Đọc Sách

Sổ tay Hình học 10 11 12
Nội dung Sổ tay Hình học 10 11 12 Bản PDF - Nội dung bài viết Sổ tay Hình học 10 11 12: Thông tin chi tiết Sổ tay Hình học 10 11 12: Thông tin chi tiết Cuốn sổ tay Hình học 10 - 11 - 12 là tài liệu hữu ích giúp học sinh lớp 10, 11, 12 nắm vững lý thuyết, công thức và phương pháp giải các dạng toán hình học một cách nhanh chóng. Với 76 trang, sổ tay được chia thành 5 chương chính bao gồm: Chương 1: Vectơ - bao gồm kiến thức cơ bản về vectơ và cách sử dụng trong giải toán. Chương 2: Hệ thức lượng trong tam giác - giúp học sinh hiểu rõ về các định lí lượng trong tam giác và áp dụng vào việc giải các bài tập liên quan. Chương 3: Tọa độ trong không gian 2 chiều - cung cấp kiến thức về tọa độ trong mặt phẳng và cách sử dụng để giải các bài toán. Chương 4: Hình học không gian cổ điển - giới thiệu về các khái niệm cơ bản trong hình học không gian và cách áp dụng vào các bài tập thực tế. Chương 5: Tọa độ trong không gian 3 chiều - là phần mở rộng với tọa độ 3 chiều, giúp học sinh hiểu rõ hơn về không gian 3 chiều và cách sử dụng tọa độ trong giải các bài toán. Với cấu trúc chặt chẽ và dễ hiểu, cuốn sổ tay hình học này sẽ là người bạn đồng hành đắc lực giúp học sinh ôn tập và nắm vững kiến thức trước kì thi sắp tới.
Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 9 10)
Nội dung Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 9 10) Bản PDF - Nội dung bài viết Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 - 9 - 10) Advance Version Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 - 9 - 10) Advance Version Bản Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 - 9 - 10) Advance Version là một tài liệu chứa đựng 90% tâm pháp và chiêu thức giúp các học viên nắm vững các kỹ thuật Casio cơ bản, đồng thời tăng công lực rất nhiều. Cuốn sách này là cẩm nang không thể thiếu cho những ai mong muốn đạt được điểm số cao trong các kỳ thi môn Toán.
Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 5 8)
Nội dung Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 5 8) Bản PDF - Nội dung bài viết Bí Kíp Thế Lực 2018 ver 1.0 (Chinh Phục Điểm 5-8) Bí Kíp Thế Lực 2018 ver 1.0 (Chinh Phục Điểm 5-8) Nguyễn Thế Lực đã sáng tạo ra một cuốn Bí Kíp Casio đặc biệt, giúp các em học sinh tối ưu hóa thời gian làm bài và đạt điểm cao trong kỳ thi. Cuốn sách này được tổ chức theo từng chuyên đề, cung cấp lời giải chi tiết để giúp các em dễ dàng hiểu và áp dụng. Bí Kíp này được thiết kế dành cho các em mong muốn đạt điểm từ 5 đến 8 trong môn Toán trên đề thi THPT Quốc Gia. Đối với những học sinh muốn luyện để đạt điểm từ 8 đến 10, họ có thể tham khảo cuốn sách Advance Version.
Sổ tay Đại số và Giải tích 10 11 12
Nội dung Sổ tay Đại số và Giải tích 10 11 12 Bản PDF - Nội dung bài viết Sổ tay Đại số và Giải tích 10 11 12 Sổ tay Đại số và Giải tích 10 11 12 Cuốn sổ tay mỏng nhẹ với 84 trang sẽ trở thành người bạn đồng hành đắc lực của học sinh trong việc tra cứu nhanh lý thuyết, công thức và phương pháp giải các dạng toán Đại số và Giải tích ở các cấp lớp 10, 11, 12. Với nội dung tổ chức rõ ràng và tiện lợi, sổ tay bao gồm 15 chương với những chủ đề quen thuộc như Mệnh đề và tập hợp, Hàm số, Phương trình, Bất đẳng thức, Thống kê, Góc lượng giác, Tổ hợp, Xác suất, Dãy số, Giới hạn, Đạo hàm, Khảo sát hàm số, Lũy thừa, Logarit, Nguyên hàm và Tích phân, Số phức. Bên cạnh việc cung cấp kiến thức lý thuyết, sổ tay còn đề cao phương pháp giải toán, giúp học sinh hiểu rõ hơn về cách thức tính toán và áp dụng lý thuyết vào thực tế. Với kiến thức đa dạng, phong phú và cách trình bày sinh động, sổ tay hứa hẹn sẽ giúp học sinh học tập hiệu quả và tự tin trước các bài toán Đại số và Giải tích.