Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Rút gọn biểu thức đại số và các bài toán liên quan

Bài toán rút gọn biểu thức đại số và các bài toán liên quan là dạng câu hỏi không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán không khó, học sinh có thể làm tốt bài toán này nếu nắm vững các công thức biến đổi. Tài liệu dưới đây sẽ cung cấp cho các em phương pháp giải 12 dạng bài tập rút gọn biểu thức đại số và các bài toán có liên quan. Dạng 1 . Rút gọn biểu thức. Ngoài việc rèn kỹ năng thực hiện các phép tính trong bài toán rút gọn. Học sinh hay quên hoặc thiếu điều kiện xác định của biến x (ĐKXĐ gồm điều kiện để các căn thức bậc hai có nghĩa, các mẫu thức khác 0 và biểu thức chia (nếu có) khác 0). Dạng 2 . Tính giá trị của biểu thức A khi x = m ( với m là số hoặc biểu thức chứa x). Nếu m là biểu thức chứa căn x = m ( bằng số), trước tiên phải rút gọn; nếu m là biểu thức có dạng căn trong căn thường đưa về hằng đẳng thức để rút gọn; nếu m là biểu thức ta phải đi giải phương trình tìm x. Trước khi tính giá trị của biểu thức A, học sinh thường quên xét xem m có thỏa mãn ĐKXĐ hay không rồi mới được thay vào biểu thức đã rút gọn để tính. Dạng 3 . Tìm giá trị của biến x để A = k (với k là hằng số hoặc là biểu thức chứa x). Thực chất đây là việc giải phương trình. Học sinh thường quên khi tìm được giá trị của x không xét xem giá trị x đó có thỏa mãn ĐKXĐ của A hay không. Dạng 4 . Tìm giá trị của biến x để A ≥ k (hoặc A ≤ k, A > k, A < k …) trong đó k là hằng số hoặc là biểu thức chứa x. Thực chất đây là việc giải bất phương trình. Học sinh thường mắc sai lầm khi giải bất phương trình thường dùng tích chéo hoặc sử dụng một số phép biến đổi sai. Dạng 5 . So sánh biểu thức A với một số hoặc một biểu thức. Thực chất đây là việc đi xét hiệu của biểu thức A với một số hoặc một biểu thức rồi so sánh hiệu đó với số 0. [ads] Dạng 6 . Chứng minh biểu thức A ≥ k (hoặc A ≤ k, A > k, A < k) với k là một số. Thực chất đây là việc đưa về chứng minh đẳng thức hoặc bất đẳng thức. Ta xét hiệu A – k rồi xét dấu biểu thức. Dạng 7 . Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: chia tử thức cho mẫu thức, rồi tìm giá trị của biến x để mẫu thức là ước của phần dư (một số). Học sinh thường quên kết hợp với điều kiên xác định của biểu thức. Dạng 8 . Tìm giá trị của biến x là số thực, số bất kì để biểu thức A có giá trị nguyên. Học sinh thường nhầm lẫn cách làm của dạng này với dạng tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: sử dụng ĐKXĐ để xét xem biểu thức A nằm trong khoảng giá trị nào, rồi tính giá trị của biểu thức A và từ đó tìm giá trị của biến x. Dạng 9 . Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Học sinh cần biết cách tìm điều kiện để phương trình hoặc bất phương trình có nghiệm. Dạng 10 . Tìm giá trị của biến x để A = |A| (hoặc A < |A|, A ≥ |A| …). Nếu |A| > A, suy ra A < 0. Nếu |A| = A, suy ra A ≥ 0. Dạng 11 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức A. Học sinh cần biết cách tìm cực trị của phân thức ở một số dạng tổng quát. Học sinh cần đưa biểu thức rút gọn A về một trong những dạng sau để tìm cực trị. Học sinh thường mắc sai lầm khi chỉ chứng minh biểu thức A ≥ k (hoặc A ≤ k) chưa chỉ ra dấu bằng nhưng đã kết luận cực trị của biểu thức A. Dạng 12 : Tìm giá trị lớn nhất, giá trị nhỏ nhất của A khi x thuộc N. Học sinh chú ý bài toán thường cho dưới dạng điều kiện xác định x ≥ a, x ≠ b, trong đó a < b. Ta phải tính giá trị với x là các số tự nhiện thuộc [a;b) và trường hợp x là số tự nhiên lớn hơn b.

Nguồn: toanmath.com

Đọc Sách

Sơ đồ tư duy Toán 9
THCS. giới thiệu đến bạn đọc bộ sơ đồ tư duy Toán 9: Đại số 9 và Hình học 9. Học toán qua qua sơ đồ tư duy Toán 9 là một phương pháp học tập hiện đại, giúp học sinh nhớ nhanh và khắc sâu các kiến thức Toán 9 được gói gọn trong các hình ảnh, ngoài ra còn giúp học sinh nhận ra được mối liên hệ giữa các kiến thức Toán 9. 1. Sơ đồ tư duy căn bậc hai và căn bậc ba 2. Sơ đồ tư duy hàm số   3. Sơ đồ tư duy tam giác [ads] 4. Sơ đồ tư duy tứ giác 5. Sơ đồ tư duy đường tròn
Tài liệu ôn thi cấp tốc Đại số 9 - Huỳnh Đức Khánh
Tài liệu gồm 29 trang tuyển chọn các bài tập điển hình trong các nội dung Đại số 9, giúp học sinh ôn tập nhanh kiến thức Toán 9. Nội dung tài liệu : Phần 1. Rút gọn căn số Phần 2. Rút gọn biểu thức Phần 3. Hàm số bậc nhất Phần 4. Hệ phương trình bậc nhất hai ẩn Phần 5. Hàm số bậc hai Phần 6. Phương trình bậc hai Phần 7. Giải bài toán bằng cách lập phương trình – lập hệ phương trình [ads] + Bài toán hình học + Bài toán vận tốc + Bài toán công nhân làm việc – bài toán vòi nước + Bài toán luân chuyển xe + Bài toán tăng năng suất + Một số bài toán khác
Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình
Tài liệu gồm 26 trang hướng dẫn giải các bài toán bằng cách lập phương trình, hệ phương trình trong chương trình Toán 9. Phương pháp giải chung : Bước 1. Lập phương trình hoặc hệ phương trình + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị) + Dựa vào dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình Bước 2. Giải phương trình hoặc hệ phương trình Bước 3. Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời (bằng câu viết) nêu rõ đơn vị của đáp số Các dạng toán cơ bản : + Dạng toán chuyển động + Dạng toán liên quan đến các kiến thức hình học + Dạng toán công việc làm chung, làm riêng + Dạng toán chảy chung, chảy riêng của vòi nước + Dạng toán tìm số + Dạng toán sử dụng các kiến thức về % + Dạng toán sử dụng các kiến thức vật lý, hóa học [ads] Các công thức cần lưu ý khi giải bài toán bằng cách lập phương trình, hệ phương trình : + Thời gian t, quãng đường s, vận tốc v: s = v.t, v = s/t, t = s/v + Chuyển động của tàu thuyền khi có tác động dòng nước: V xuôi dòng = V thực + V dòng nước V ngược dòng = V thực – V dòng nước + Khối lượng công việc A, năng suất lao động N, thời gian làm việc T: A = N.T
Các dạng toán căn bậc ba - Nguyễn Chí Thành
Tài liệu gồm 17 trang tuyển tập các bài toán về chủ đề căn bậc 3  (Chương trình Toán 9 – Tập 1) được giải chi tiết. Các dạng toán gồm có: + Dạng 1. Thực hiện phép tính + Dạng 2. Chứng minh đẳng thức + Dạng 3. So sánh hai căn bậc 3 + Dạng 4. Giải phương trình