Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình mặt phẳng và một số bài toán liên quan

Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình mặt phẳng và một số bài toán liên quan đến phương trình mặt phẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình mặt phẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình mặt phẳng và một số bài toán liên quan: Phần A . CÂU HỎI Dạng toán 1. Xác định VTPT (Trang 2). Dạng toán 2. Xác định phương trình mặt phẳng (Trang 3). + Dạng toán 2.1 Xác định phương trình mặt phẳng cơ bản (Trang 3). + Dạng toán 2.2 Xác định phương trình mặt phẳng khi biết yếu tố vuông góc (Trang 4). + Dạng toán 2.3 Xác định phương trình mặt phẳng khi biết yếu tố song song (Trang 7). + Dạng toán 2.4 Xác định phương trình mặt phẳng đoạn chắn (Trang 8). Dạng toán 3. Một số bài toán liên quan điểm với mặt phẳng (Trang 10). + Dạng toán 3.1 Điểm thuộc mặt phẳng (Trang 10). + Dạng toán 3.2 Phương trình mặt phẳng qua 3 điểm (Trang 11). + Dạng toán 3.3 Khoảng cách từ điểm đến mặt (Trang 11). + Dạng toán 3.4 Cực trị (Trang 13). Dạng toán 4. Một số bài toán liên quan giữa mặt phẳng – mặt cầu (Trang 16). + Dạng toán 4.1 Viết phương trình mặt cầu (Trang 16). + Dạng toán 4.2 Vị trí tương đối, giao tuyến (Trang 17). + Dạng toán 4.3 Cực trị (Trang 20). Dạng toán 5. Một số bài toán liên quan giữa mặt phẳng – mặt phẳng (Trang 21). + Dạng toán 5.1 Vị trí tương đối, khoảng cách, giao tuyến (Trang 21). + Dạng toán 5.2 Góc của 2 mặt phẳng (Trang 23). Dạng toán 6. Một số bài toán liên khác quan điểm – mặt phẳng – mặt cầu (Trang 24). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTPT (Trang 26). Dạng toán 2. Xác định phương trình mặt phẳng (Trang 27). + Dạng toán 2.1 Xác định phương trình mặt phẳng cơ bản (Trang 27). + Dạng toán 2.2 Xác định phương trình mặt phẳng khi biết yếu tố vuông góc (Trang 27). + Dạng toán 2.3 Xác định phương trình mặt phẳng khi biết yếu tố song song (Trang 31). + Dạng toán 2.4 Xác định phương trình mặt phẳng đoạn chắn (Trang 33). Dạng toán 3. Một số bài toán liên quan điểm với mặt phẳng (Trang 36). + Dạng toán 3.1 Điểm thuộc mặt phẳng (Trang 36). + Dạng toán 3.2 Phương trình mặt phẳng qua 3 điểm (Trang 37). + Dạng toán 3.3 Khoảng cách từ điểm đến mặt (Trang 38). + Dạng toán 3.4 Cực trị (Trang 39). Dạng toán 4. Một số bài toán liên quan giữa mặt phẳng – mặt cầu (Trang 47). + Dạng toán 4.1 Viết phương trình mặt cầu (Trang 47). + Dạng toán 4.2 Vị trí tương đối, giao tuyến (Trang 48). + Dạng toán 4.3 Cực trị (Trang 52). Dạng toán 5. Một số bài toán liên quan giữa mặt phẳng – mặt phẳng (Trang 57). + Dạng toán 5.1 Vị trí tương đối, khoảng cách, giao tuyến (Trang 57). + Dạng toán 5.2 Góc của 2 mặt phẳng (Trang 59). Dạng toán 6. Một số bài toán liên khác quan điểm – mặt phẳng – mặt cầu (Trang 61).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt cầu trong không gian Oxyz - Phạm Văn Long
Tài liệu gồm 28 trang gồm lý thuyết mặt cầu, hướng dẫn phương pháp giải các dạng toán và bài tập trắc nghiệm chuyên đề mặt cầu trong không gian Oxyz. 1. Tóm tắt lý thuyết, phương trình  mặt cầu và một số công thức tính cơ bản 2. Ví dụ minh họa về 2 dạng toán + Dạng 1: Viết phương trình mặt cầu Thuật toán 1: Bước 1: Xác định tâm I Bước 2: Xác định bán kính R của (S) Bước 3: Mặt cầu (S) có tâm I và bán kính R Thuật toán 2: Gọi phương trình dạng tổng quát của (S), sử dụng các điều kiện để tìm các tham số [ads] Kỹ năng xác định tâm và bán kính của đường tròn trong không gian Cho mặt cầu (S) tâm I bán kính R. Mặt phẳng (P) cắt (S) theo một đường tròn (C) Bước 1: Lập phương trình đường thẳng d qua I và vuông góc với mặt phẳng (P) Bước 2: Tâm H của đường tròn (C) là giao điểm của d và mặt phẳng (P) Bước 3: Gọi r là bán kính của (C) + Dạng 2: Sự tương giao và sự tiếp xúc Đường thẳng Δ là tiếp tuyến của (S) ⇔ d(I; Δ) = R Mặt phẳng (α) là tiếp diện của (S) ⇔ d(I; (α)) = R 3. Bài tập trắc nghiệm tự luyện được sắp xếp theo mức độ phân loại
Hiểu rõ bản chất hình học của bài toán cực trị tọa độ không gian - Võ Trọng Trí
Để giải nhanh bài toán cực trị trong hình học tọa độ không gian, chúng ta cần tìm được vị trí đặc biệt của nghiệm hình để cực trị (số đo góc, khoảng cách, độ dài) xảy ra. Khi biết vị trí đặc biệt đó, việc tính toán chỉ còn vài dòng đơn giản là ra kết quả. Sau đây các các bài toán cực trị tọa độ không gian thường gặp, bản chất hình học của nó và công thức giải nhanh bài toán đó. + Bài toán 1: Viết phương trình mặt phẳng đi qua một đường thẳng d và cách một điểm M ∉ d một khoảng lớn nhất. + Bài toán 2: Viết phương trình mặt phẳng (P) chứa đường thẳng d, tạo với đường thẳng d’(d’ không song song với d) một góc lớn nhất. + Bài toán 3: Viết phương trình đường thẳng d đi qua một điểm A cho trước và nằm trong mặt phẳng (P) cho trước và cách một điểm M cho trước một khoảng nhỏ nhất. (AM không vuông góc với (P)). + Bài toán 4: Viết phương trình đường thẳng d đi qua điểm A cho trước, nằm trong mặt phẳng (P) và cách điểm M (M khác A, MA không vuông góc với (P)) một khoảng lớn nhất. [ads] + Bài toán 5: Cho mặt phẳng (P) và điểm A ∈ (P), và đường thẳng d (d cắt (P) và d không vuông góc với (P)). Viết phương trình đường thẳng d’ đi qua A, nằm trong (P) và tạo với d một góc nhỏ nhất. + Bài toán 6: Cho mặt phẳng (P) và điểm A ∈ (P) và đường thẳng d cắt (P) tại điểm khác M khác A. Viết phương trình đường thẳng d’ nằm trong (P), đi qua A và khoảng cách giữa d và d’ lớn nhất. + Bài toán 7: Cho mặt phẳng (P) và đường thẳng d//(P). Viết phương trình đường thẳng d//d′ và cách d một khoảng nhỏ nhất. + Bài toán 8: Viết phương trình mặt phẳng đi qua điểm A và cách điểm M (khác A) một khoảng lớn nhất. + Bài toán 9: Các bài toán khác đòi hỏi chúng ta cần có trực giác hình học để giải nhanh.
Tuyển tập một số bài toán cực trị trong hình học tọa độ không gian - Lưu Huy Thưởng
Tài liệu gồm 20 trang tuyển chọn một số bài toán cực trị trong hình học tọa độ không gian, các bài toán được chia thành 2 phần: + Tuyển tập một số bài toán cực trị viết phương trình mặt phẳng + Tuyển tập một số bài toán cực trị viết phương trình đường thẳng Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: (x + 2)/1 = y/-2 = (z – 2)/2. Gọi Δ là đường thẳng qua điểm A(4;0;–1) song song với d. Gọi (P): Ax + By + Cz + D = 0 (A, B, C ∈ Z) là mặt phẳng chứa Δ và có khoảng cách đến d là lớn nhất. Khi đó M = A^2 + B^2 + C^2 có thể là giá trị nào sau đây? + Trong không gian với hệ toạ độ Oxyz, gọi (P) là mặt phẳng đi qua điểm M (1; 4; 9), cắt các tia Ox, Oy, Oz tại A, B, C sao cho biểu thức OA + OB + OC có giá trị nhỏ nhất. Mặt phẳng (P) đi qua điểm nào dưới đây? [ads] + Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1; 5; 0), B(3; 3; 6) và đường thẳng (x + 1)/2 = (y – 1)/-1 = z/2. Gọi d là đường thẳng đi qua điểm B và cắt đường thẳng  tại điểm C sao cho diện tích tam giác ABC có giá trị nhỏ nhất. Đường thẳng d vuông góc với đường thẳng nào sau đây?
Chuyên đề hình học giải tích trong không gian - Trần Thông
Tài liệu gồm 111 trang gồm lý thuyết, công thức, dạng toán, hưỡng dẫn giải và bài tập trắc nghiệm có đáp án chuyên đề hình học giải tích trong không gian. Trong chương trình Hình học 12, các dạng toán liên quan đến đường thẳng, mặt phẳng, mặt cầu trong không gian là các dạng toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong đề thi trung học phổ thông quốc gia nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy còn nhiều bạn học sinh lúng túng nhiều trong quá trình giải các bài toán liên quan đến đường thẳng, mặt phẳng, mặt cầu. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề: Hình học giải tích trong không gian. Trong chuyên đề, tôi đã tóm tắt lý thuyết, phân loại các dạng bài tập từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Bên cạnh đó, trong chuyên đề này cũng giới thiệu lại một số dạng toán khó, lạ ít được sử dụng trong các kỳ thi những năm gần đây để bạn đọc có cái nhìn tổng quát hơn về hình học giải tích trong không gian. [ads] Chuyên đề gồm 4 phần: + Phần A: Kiến thức cần nhớ + Phần B: Bài tập minh họa + Phần C: Ứng dụng giải các bài tập hình học không gian thuần túy + Phần D: Bài tập trắc nghiệm