Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2023 - 2024 cụm huyện Yên Dũng - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 năm học 2023 – 2024 cụm trường THPT huyện Yên Dũng, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm mã đề 107 108 109 110 111. Trích dẫn Đề thi HSG Toán 11 năm 2023 – 2024 cụm huyện Yên Dũng – Bắc Giang : + Một anh sinh viên T nhập học đại học vào tháng năm . Bắt đầu từ tháng năm 2023, cứ vào ngày mồng một hàng tháng anh vay ngân hàng triệu đồng với lãi suất cố định /tháng. Lãi tháng trước được cộng vào số nợ để tiếp tục tính lãi cho tháng tiếp theo (lãi kép). Vào ngày mồng một hàng tháng kể từ tháng năm 2025 về sau anh không vay ngân hàng nữa và anh còn trả được cho ngân hàng triệu đồng do việc làm thêm. Hỏi ngay sau khi kết thúc ngày anh ra trường anh còn nợ ngân hàng bao nhiêu tiền (làm tròn đến hàng nghìn đồng)? + Lớp 11A có 50 học sinh, trong đó có 30 học sinh thích học môn Toán, 28 học sinh thích học môn Văn và 6 học sinh không thích học cả Toán và Văn. Chọn ngẫu nhiên một học sinh từ lớp đó. Xác suất để học sinh được chọn chỉ thích học môn Toán mà không thích học môn Văn là? + Một rạp hát có 25 hàng ghế, mỗi hàng có 20 ghế. Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng giá mỗi vé ở hàng ghế thứ nhất là 500000 đồng và giá vé của hàng ghế sau ít hơn giá vé ở hàng ghế liền trước 15000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic Toán 11 năm 2019 - 2020 trường THPT Mỹ Đức A - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic Toán 11 năm học 2019 – 2020 trường THPT Mỹ Đức A – Hà Nội, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán 11 năm 2019 – 2020 trường THPT Mỹ Đức A – Hà Nội : + Cho mặt phẳng (α) và hai đường thẳng chéo nhau d1, d2 cắt (α) tại A, B. Gọi ∆ là đường thẳng thay đổi luôn song song với (α), cắt d1 tại M, cắt d2 tại N. Đường thẳng d qua N luôn song song với d1 cắt (α) tại N’. a) Tứ giác AMNN’ là hình gì? b) Tìm tập hợp các điểm N’. c) Gọi O là trung điểm của AB, I là trung điểm của MN. Chứng minh rằng OI là đường thẳng cố định khi M di động. [ads] + Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;20]. Tính xác suất để tổng các lập phương của ba số được viết ra chia hết cho 3. + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác.
Đề thi HSG Toán 11 lần 2 năm 2019 - 2020 cụm trường THPT Thanh Chương - Nghệ An
Nhằm chuẩn bị cho kỳ thi chọn học sinh giỏi môn Toán 11 cấp tỉnh do sở Giáo dục và Đào tạo Nghệ An tổ chức, vừa qua, cụm các trường THPT trên địa bàn huyện Thanh Chương, tỉnh Nghệ An đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 11 năm học 2019 – 2020 lần thứ hai. Đề thi HSG Toán 11 lần 2 năm 2019 – 2020 cụm trường THPT Thanh Chương – Nghệ An gồm có 06 bài toán tự luận, đề thi có 01 trang, học sinh làm bài trong 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán 11 lần 2 năm 2019 – 2020 cụm trường THPT Thanh Chương – Nghệ An : + Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A(2;5) và H là hình chiếu vuông góc của A lên cạnh BC. Gọi I, J(2;-1) và K(6;1) lần lượt là tâm đường nội tiếp của tam giác ABC, ABH, ACH. Chứng minh I là trực tâm của tam giác AJK và tìm tọa độ các đỉnh B, C. [ads] + Cho tứ diện đều ABCD có trọng tâm G, cạnh AB = a; O là tâm của tam giác BCD và M là điểm bất kỳ thuộc mặt phẳng (BCD). Gọi H, K, L lần lượt là hình chiếu vuông góc của M lên các mặt phẳng (ACD), (ABD), (ABC). Mặt phẳng (P) bất kỳ đi qua trọng tâm G, cắt các cạnh AB, AC, AD lần lượt tại B’, C’,  D’. Chứng minh AB/AB’ + AC/AC’ + AD/AD’ = 4. Chứng minh đường thẳng GM luôn đi qua trọng tâm E của tam giác HKL. + Cho đa giác đều có 60 đỉnh. Hỏi có bao nhiêu tam giác có 3 cạnh là đường chéo của đa giác đó?
Đề thi chọn HSG Toán 11 năm học 2019 - 2020 cụm Tân Yên - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 năm học 2019 – 2020 cụm Tân Yên, tỉnh Bắc Giang; đề thi gồm có 40 câu trắc nghiệm (chiếm 14 điểm) và 03 câu tự luận (chiếm 06 điểm), học sinh có 120 phút để làm bài, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán 11 năm học 2019 – 2020 cụm Tân Yên – Bắc Giang : + Trong tỉnh A tỉ lệ học sinh giỏi môn văn là 9%, học sinh giỏi môn toán là 12% và học sinh giỏi cả hai môn là 7%. Chọn ngẫu nhiên một học sinh của tỉnh. Tính xác suất để học sinh đó học giỏi Văn hoặc học giỏi Toán. + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là? A. Tam giác MNE. B. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. C. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. D. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. [ads] + Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là 13,5 triệu đồng/quý, và kể từ quý làm việc thứ hai, múc lương sẽ được tăng thêm 500.000 đồng mỗi quý. Tính tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty? + Từ các số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên, mỗi số có 6 chữ số đồng thời thỏa mãn điều kiện :sáu số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số sau một đơn vị? + Cho hai dãy ghế đối diện nhau, mỗi dãy có năm ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam và 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ.
Đề thi thử HSG tỉnh Toán 11 năm 2019 - 2020 trường Nguyễn Duy Trinh - Nghệ An
Nhằm chuẩn bị cho kỳ thi chọn học sinh giỏi môn Toán 11 cấp tỉnh do sở Giáo dục và Đào tạo Nghệ An tổ chức, vừa qua, trường THPT Nguyễn Duy Trinh – Nghệ An đã tổ chức kỳ thi thử học sinh giỏi tỉnh Toán 11 năm học 2019 – 2020. Đề thi thử HSG tỉnh Toán 11 năm 2019 – 2020 trường Nguyễn Duy Trinh – Nghệ An gồm có 01 trang với 04 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử HSG tỉnh Toán 11 năm 2019 – 2020 trường Nguyễn Duy Trinh – Nghệ An : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC vuông tại C, có phân giác trong AD với D(7/2;-7/2) thuộc BC. Gọi E và F lần lượt thuộc các cạnh AB và AC sao cho AE = AF. Đường thẳng EF cắt BC tại K. Biết E(3/2;-5/2), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng AK là x – 2y − 3 = 0. Viết phương trình các cạnh của tam giác ABC. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng d: x – y = 0 và đường tròn (T): (x – 1)^2 + (y + 4)^2 = 5. Từ điểm M thuộc đường thẳng d kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD đến đường tròn (T) với C nằm giữa M và D; AB cắt CD tại N. Tìm tọa độ điểm M biết rằng CD = 1 và ND = 5/9. + Có bao nhiêu số tự nhiên có 4 chữ số sao cho trong mỗi số đó có một chữ số xuất hiện hai lần, các chữ số còn lại xuất hiện không quá một lần.