Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 40 đề thi thử vào lớp 10 môn Toán các trường THCS tại Hà Nội

Tài liệu gồm 316 trang, tuyển tập 40 đề thi thử tuyển sinh vào lớp 10 môn Toán của các trường THCS trên địa bàn thành phố Hà Nội, có lời giải chi tiết. Trường THCS Minh Khai, Hà Nội. Trường THCS Mạc Đĩnh Chi, Hà Nội. Trường THCS Láng Thượng, Hà Nội. Trường THCS Giảng Võ, Hà Nội. Phòng Giáo dục và Đào tạo Cầu Giấy, Hà Nội. Trường THCS Cát Linh, Hà Nội. Trường THCS Archimedes, Hà Nội. Trung tâm bồi dưỡng văn hóa Hà Nội – Amsterdam. Phòng Giáo dục và Đào tạo quận Long Biên, Hà Nội. Vietelite Education, Hà Nội. Trường THCS Đại Áng, Hà Nội. Trung tâm bồi dưỡng văn hóa A-Star, Hà Nội. Trường THCS Archimedes Academy, Hà Nội. Trường THCS Phương Liệt, Hà Nội. Trường THCS Phan Huy Chú, Hà Nội. Trường THCS Phương Liệt, Hà Nội. Trường THCS Bế Văn Đàn, Hà Nội. [ads] Trường THCS & THPT Lương Thế Vinh 2019 – 2020, Hà Nội. Trường THCS Archimedes Academy, Hà Nội. Trường THCS & THPT Lương Thế Vinh, Hà Nội. Trường THCS Archimedes Academy, Hà Nội. Trường THCS Phan Huy Chú, Hà Nội. Trường THCS Phương Liệt, Hà Nội. Trường THCS Phụng Thượng, Hà Nội. Trường THPT Trần Nhân Tông, Hà Nội. Trường THCS Nghĩa Tân, Hà Nội. Trường THCS Thống Nhất, Hà Nội. Trường THCS Nam Từ Liêm, Hà Nội. Trường THCS Mạc Đĩnh Chi, Hà Nội. Trường THCS Phan Chu Trinh, Hà Nội. Trường THCS Phan Đình Giót, Hà Nội. Trường THCS Nghĩa Tân, Hà Nội. Trường THCS Hoàng Hoa Thám, Hà Nội. Trường THCS Nhân Chính, Hà Nội. Trường THCS Lê Quí Đôn, Hà Nội. Trường THCS Ngô Sĩ Liên, Hà Nội. Trường THCS Hoàng Hoa Thám, Hà Nội. Trường THCS Nhân Chính, Hà Nội. Trường THCS Ngô Sĩ Liên, Hà Nội. Trường THCS Ba Đình, Hà Nội.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THCS Nga Thiện - Thanh Hóa
Đề thi thử tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THCS Nga Thiện – Thanh Hóa gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nam
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nam gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB [ads] 1) Chứng minh tứ giác MAOB nội tiếp đường tròn 2) Chứng minh đường thẳng AE song song với đường thẳng MO 3) Chứng minh: MN2 = NF.NA 4) Chứng minh: MN = NH
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THCS Thiệu Vận - Thanh Hóa lần 1
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Thiệu Vận – Thanh Hóa lần 1 gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 2)x + m – 3 và parabol (P): y = mx^2 (m khác 0) a. Tìm m để đường thẳng d đi qua điểm A (-1;3) b. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 trái dấu (với (d) là ở đề bài cho) [ads] + Cho đường tròn tâm (0), đường kính AB = 2R. Trên đường thẳng AB lấy điểm H sao cho B nằm giữa A và H (H không trùng với B), qua H dựng đường thẳng d vuông góc với AB. Lấy C cố định thuộc đoạn thẳng OB (C không trùng với O và B). Qua điểm C kẻ đường thẳng a bất kì cắt đường tròn (0) tại hai điểm E và F (a không trùng với AB). Các tia AE và AF cắt đường thẳng d lần lượt tại M, N a) Chứng minh tứ giác BEMH nội tiếp đường tròn b) Chứng minh 2 tam giác AFB và AHN đồng dạng, và đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A khi đường thẳng a thay đổi c) Cho AB = 4cm; BC = 1cm; HB = 1 cm. Tìm giá trị nhỏ nhất của diện tích tam giác AMN
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Định gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (T) tâm O đường kính AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD [ads] a) Chứng minh tứ giác AOHP nội tiếp được đường tròn b) Kẻ DI song song PO, điểm I thuộc AB, chứng minh góc PDI = góc BAH c) Chứng minh đẳng thức: PA^2 = PC.PD d) BC cắt OP tại J, chứng minh AJ//DB