Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 9 năm 2018 2019 phòng GDĐT Long Biên Hà Nội

Đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Long Biên – Hà Nội gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra toàn diện những kiến thức môn Toán mà học sinh khối lớp 9 đã được học trong học kỳ vừa qua, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Long Biên – Hà Nội : + Tham gia phong trào “Thiếu niên sáng tạo”, bạn Trí Bình đã thiết kế được một chiếc mũ vải rộng vành có kích thước như hình vẽ. Hãy tính tổng diện tích vải cần để làm cái mũ đó biết rằng vành mũ hình tròn và ống mũ hình trụ (coi phần mép vải được may không đáng kể. Kết quả làm tròn đến hàng đơn vị). [ads] + Cho đường tròn tâm O bán kính R, đường kính AB. Điểm H bất kì thuộc đoạn OB, H khác O và B. Dây CD vuông góc với AB tại H. Đường thẳng d tiếp xúc với đường tròn tại A. Nối CO, DO cắt đường thẳng d tại M và N. Các đường thẳng CM và DN cắt đường tròn (O) lần lượt tại E và F (E ≠ C, F ≠ D). a) Chứng minh tứ giác MNFE nội tiếp. b) Chứng minh ME.MC = NF.ND. c) Tìm vị trí của điểm H để tứ giác AEOF là hình thoi. d) Lấy điểm K đối xứng với C qua A. Gọi G là trọng tâm tam giác KAB. Chứng minh rằng khi H di chuyển trên đoạn OB thì điểm G thuộc một đường tròn cố định. + Một trường THCS tổ chức cho 250 người bao gồm giáo viên và học sinh đi tham quan khu du lịch Đảo Ngọc Xanh. Biết giá vé vào cổng của một giáo viên là 80000 đồng, vé vào cổng của một học sinh là 60000 đồng. Nhà trường tổ chức đi vào đúng dịp Khai trương nên được giảm 5% cho mỗi vé vào cổng, vì vậy nhà trường chỉ phải trả tổng số tiền là 14535000 đồng. Hỏi có bao nhiêu giáo viên và học sinh của trường đi tham quan?

Nguồn: toanmath.com

Đọc Sách

Đề học kì 2 Toán 9 năm 2023 - 2024 phòng GDĐT Thái Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng cuối học kì 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 101 – 102 – 103 – 104 – 105. Trích dẫn Đề học kì 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT Thái Hòa – Nghệ An : + Để chuẩn bị tham gia kì thi tuyển sinh vào lớp 10 đạt kết quả như mong đợi, bạn A đã lập kế hoạch sẽ làm xong 80 bài tập trong khoảng thời gian nhất định với số lượng bài tập được chia đều trong các ngày. Trên thực tế, khi làm bài tập mỗi ngày bạn A đã làm thêm 2 bài tập so với kế hoạch ban đầu nên đã hoàn thành sớm hơn 2 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày bạn A phải làm xong bao nhiêu bài tập? + Cho tam giác ABC AB AC có ba góc nhọn, nội tiếp đường tròn tâm O. Tiếp tuyến tại Acủa đường tròn O cắt đường thẳng BC tại K. Từ O kẻ OD vuông góc với BC tại D, tia OD cắt đường tròn O tại E. a) Chứng minh tứ giác KDOA nội tiếp. b) Đường thẳng AE cắt BC tại N. Chứng minh tam giác KNA cân và 2 KN KB KC. + Cho hai đường thẳng 1 y x5 2 và 1 y x5 2. Hai đường thẳng đó: A. cắt nhau tại điểm có tung độ bằng 5. B. Trùng nhau. C. cắt nhau tại điểm có hoành độ bằng 5. D. song song với nhau.
Đề kiểm tra cuối học kỳ 2 Toán 9 năm 2023 - 2024 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra cuối học kỳ 2 Toán 9 năm 2023 – 2024 sở GD&ĐT Bắc Ninh : + Một tổ có kế hoạch sản xuất 350 sản phẩm theo năng suất dự định. Nếu năng suất tăng lên 10 sản phẩm mỗi ngày thì tổ hoàn thành sớm 2 ngày so với giảm năng suất 10 sản phẩm mỗi ngày. Hỏi tổ đó đã dự kiến làm bao nhiêu sản phẩm trong một ngày? + Cho đường tròn O R. Hai đường kính AB và CD vuông góc với nhau. Trên tia đối của tia CD lấy điểm S SA cắt đường tròn tại M tiếp tuyến của đường tròn tại M cắt CD ở P, BM cắt CD ở T. a) Chứng minh tứ giác AMTO nội tiếp. b) Chứng minh rằng P là trung điểm của ST. c) Biết PM R tính TA SM theo R. + Cho các số thực dương abc thỏa mãn ab bc ca abc. Chứng minh rằng 512.
Đề học kì 2 Toán 9 năm 2023 - 2024 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 3m. Nếu tăng chiều dài thêm 2m và giảm chiều rộng 1m thì diện tích mảnh đất không đổi. Tính chiều dài, chiều rộng ban đầu của mảnh đất. + Một lon nước ngọt hình trụ có đường kính đáy là 5,5 cm, chiều cao là 13cm. Hỏi lon nước đó chứa được bao nhiêu ml nước ngọt (Kết quả làm tròn đến chữ số thập phân thứ hai, lấy 𝜋 ≈ 3,14). + Cho ∆ABC nhọn nội tiếp đường tròn (O; R), biết AB < AC. Các đường cao BM, CN của ∆ABC cắt nhau tại H (M thuộc AC; N thuộc AB). Gọi P là giao điểm của MN và CB. Đường thẳng AP cắt (O) tại K (K khác A). 1) Chứng minh: Tứ giác BNMC nội tiếp. 2) Chứng minh: PB.PC = PN. PM và ∆PKN đồng dạng với ∆PMA. 3) Gọi I là trung điểm của BC. Chứng minh: Ba điểm K, H, I thẳng hàng.
Đề cuối kì 2 Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra đánh giá cuối học kì 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kì 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Hải Dương : + Một công nhân dự định làm 70 sản phẩm trong một thời gian nhất định. Do cải tiến kỹ thuật, mỗi giờ người đó làm thêm được 5 sản phẩm. Vì vậy, chẳng những hoàn thành kế hoạch sớm hơn dự định 40 phút mà còn làm vượt mức 10 sản phẩm. Hỏi theo dự định, mỗi giờ người đó làm được bao nhiêu sản phẩm? + Cho phương trình 2 x mx m (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x thỏa mãn: 2 x 19. + Cho đường tròn (O). Từ điểm A nằm ngoài đường tròn (O) vẽ tiếp tuyến AB (B là tiếp điểm) và cát tuyến AMN không cắt bán kính OB (M nằm giữa A và N). Gọi I là hình chiếu của O trên MN. 1) Chứng minh tứ giác ABOI nội tiếp một đường tròn. 2) Chứng minh AB2 = AM.AN 3) Từ B kẻ đường thẳng vuông góc với AO tại H. Vẽ đường thẳng NE song song với BH (E thuộc đường tròn (O)). Chứng minh: AHM NMO và ba điểm M H E thẳng hàng.