Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Lào Cai

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Chúng ta hãy cùng tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Lào Cai. 1. Tính xác suất để quân Tốt trên bàn cờ vua không nằm trên đường chéo hoặc cạnh của bàn cờ. 2. Anh Hùng điều khiển xe gắn máy từ thành phố A đến thành phố B. Anh đi được 3/4 quãng đường, sau đó dừng sửa xe. Biết anh đi với vận tốc giảm 10 km/h và đến thành phố B vào lúc 10 giờ 24 phút. Hỏi anh dừng sửa xe lúc mấy giờ? 3. Chứng minh rằng 5 điểm A, E, D, M, O thuộc một đường tròn và tứ giác BQOC nội tiếp một đường tròn. Tiếp tuyến tại B, C của đường tròn (O) và đường thẳng AD đồng quy. Chứng minh HAK = MAO và KB/KC = AB^2/AC^2. Đề thi này sẽ giúp các em rèn luyện kỹ năng giải bài toán logic, tính toán và chứng minh trong môn Toán. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển HSG Toán 9 năm 2022 - 2023 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển chính thức học sinh giỏi tham dự kỳ thi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề chọn đội tuyển HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Kim Thành – Hải Dương : + Cho a, b, c, k là các số tự nhiên thỏa mãn: 333 2 a b c abck k 2 1. Chứng minh rằng k − 1 chia hết cho 3. Tìm x, y nguyên biết: 2 2 7 4 12 5 0 x y xy x. + Cho ∆ABC vuông tại A, đường cao AH. Các đường phân giác của góc BAH, CAH cắt BC lần lượt tại E, F. a) Chứng minh: 2 2 BC EH CH BE và tâm đường tròn ngoại tiếp ∆AEF trùng với tâm đường tròn nội tiếp ∆ABC. Kí hiệu 1 2 d d lần lượt là các đường thẳng vuông góc với BC tại E, F. Chứng minh rằng 1 2 d d tiếp xúc với đường tròn nội tiếp ∆ABC. + Cho tam giác ABC. Gọi ABC lll lần lượt là độ dài các đường phân giác trong của góc A, B, C. Chứng minh rằng 2 cos 2 A bc A l b c và 1 1 1 111 ABC l l l abc.
Đề khảo sát HSG Toán 9 năm 2022 - 2023 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Kim Thành – Hải Dương : + Tìm a b để đa thức 3 2 f x x ax b 2 chia cho đa thức x − 1 dư 2, chia cho đa thức x − 2 dư 17. Cho abc là ba số nguyên tố cùng nhau thỏa mãn: 111 c ab. Chứng minh: M ab là số chính phương. + Cho tam giác ABC vuông tại A, có đường cao AH. Kẻ HI vuông góc với AB, HK vuông góc với AC (I thuộc AB, K thuộc AC). Chứng minh: a) 3 3 BI AB CK AC b) CK BH BI CH AH BC. Cho ∆ABC có G là trọng tâm, một đường thẳng bất kỳ qua G, cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh rằng: 3 AB AC AM AN. + Cho các số dương x, y, z thay đổi thỏa mãn: xy yz zx xyz. Tìm giá trị lớn nhất của biểu thức: 111 43 433 4 M x yz x y z xy z.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Tư ngày 29 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho hàm số y = –4×2 có đồ thị là parabol (P) và một điểm Q(0;−9). Hãy tìm hai điểm M, N trên (P) và có tọa độ là những số nguyên sao cho tứ giác OMQN là một tứ giác lồi có diện tích bằng 27/2 cm2 (đơn vị trên các trục tọa độ là cm). + Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), tiếp tuyến tại A của (O) cắt BC tại M. Kẻ tiếp tuyến MD của (O) (D khác A). Gọi G, E, F lần lượt là hình chiếu vuông góc của D lên BC, AB, AC. Chứng minh rằng: 1) MA2 = MB.MC và BC = 2R.sin BAC. 2) AB DB AC DC. 3) G là trung điểm EF. + Cho tam giác ABC vuông tại A. Từ một điểm I nằm trong tam giác ta kẻ IM vuông góc với BC, IN vuông góc với AC, IK vuông góc với AB (M thuộc BC, N thuộc AC, K thuộc AB). Xác định vị trí điểm I sao cho tổng IM2 + IN2 + IK2 nhỏ nhất.
Đề học sinh giỏi thành phố Toán THCS năm 2022 - 2023 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi thành phố Toán THCS năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Cho ∆ABC nhọn không cân tại đỉnh A, nội tiếp đường tròn (O). Kẻ đường cao AH của ∆ ABC H BC. Gọi P Q lần lượt là chân đường vuông góc kẻ từ H đến các đường thẳng AB AC. a) Chứng minh tứ giác BCQP nội tiếp. b) Hai đường thẳng PQ và BC cắt nhau tại M, đường thẳng AM cắt đường tròn (O) tại điểm thứ hai là K (K khác A). Chứng minh rằng 2 MH MK MA. c) Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQP. Chứng minh ba điểm IHK thẳng hàng. + Tìm độ dài nhỏ nhất của cạnh một hình vuông sao cho có thể đặt vào trong nó 5 hình tròn có bán kính bằng 1, biết rằng các hình tròn này đôi một không có quá một điểm chung. + Chứng minh rằng 3 6 6 6 … 6 1 5 6 27 3 6 6 … 6 (trong đó biểu thức chứa căn có 2023 dấu căn ở tử số và 2022 dấu căn ở mẫu số).