Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL đầu năm 2018 - 2019 môn Toán 12 trường THPT Lê Văn Thịnh - Bắc Ninh

Đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh mã đề 132 được biên soạn theo hình thức tương tự như đề thi THPT Quốc gia với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, kỳ thi được tổ chức vào ngày 16/09/2018. Nội dung kiểm tra hướng đến gồm: nội dung chương trình Toán 11, chủ đề khảo sát và đồ thị hàm số, khối đa diện và thể tích. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh : + Cho hàm số y = f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau: (1) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị lớn nhất của f(x) trên [a;b]. (2) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị nhỏ nhất của f(x) trên [a;b]. (3) Nếu hàm số f(x) đạt cực đại tại điểm x0 và đạt cực tiểu tại điểm x1 (x0, x1 ∈ (a;b)) thì ta luôn có f(x0) > f(x1). Số khẳng định đúng là? [ads] + Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B ) sao cho AM = x, BN = y, x + y = 8. Biết AB = 6, góc giữa hai đường thẳng a và b bằng 60 độ. Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp MN = 8). + Cho hàm số y = (x + 1)/(2 – x). Khẳng định nào sau đây đúng? A. Hàm số đã cho đồng biến trên từng khoảng xác định của nó. B. Hàm số đã cho đồng biến trên khoảng (-∞;2) ∪ (2;+∞). C. Hàm số đã cho đồng biến trên R. D. Hàm số đã cho nghịch biến trên từng khoảng xác định của nó.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 lần 1 năm 2020 - 2021 trường THPT chuyên Hưng Yên
Ngày … tháng 12 năm 2020, trường THPT chuyên Hưng Yên, tỉnh Hưng Yên tổ chức kỳ thi kiểm tra đánh giá chất lượng lớp 12 môn Toán năm học 2020 – 2021 lần thứ nhất. Đề khảo sát chất lượng Toán 12 lần 1 năm 2020 – 2021 trường THPT chuyên Hưng Yên được biên soạn theo dạng đề trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2020 – 2021 trường THPT chuyên Hưng Yên : + Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi công thức c(t) = t/(t^2 + 1) (mg / L). Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất? + Gọi d là đường thẳng đi qua A(2;0) có hệ số góc m (m > 0) cắt đồ thị (C): y = -x^3 + 6x^2 – 9x + 2 tại ba điểm phân biệt A, B, C. Gọi B’, C’ lần lượt là hình chiếu vuông góc của B, C lên trục tung. Biết rằng hình thang BB’C’C có diện tích bằng 8, giá trị của m thuộc khoảng nào sau đây? + Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có 3 đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho. Chọn 1 tam giác trong tập hợp X. Xác suất để tam giác được chọn là tam giác cân bằng?
Đề khảo sát Toán 12 lần 1 năm 2020 - 2021 trường THPT Lương Tài - Bắc Ninh
Chủ Nhật ngày 29 tháng 11 năm 2020, trường THPT Lương Tài, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán đối với học sinh khối 12 năm học 2020 – 2021 lần thứ nhất. Đề khảo sát Toán 12 lần 1 năm 2020 – 2021 trường THPT Lương Tài – Bắc Ninh gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2020 – 2021 trường THPT Lương Tài – Bắc Ninh : + Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2 (chi phí được tính theo diện tích xây dựng, bao gồm diện tích đáy và diện tích xung quanh, không tính chiều dày của đáy và diện tích xung quanh, không tính chiều dày của đáy và thành bể). Hãy xác định chi phí thấp nhất để xây bể (làm tròn đến đơn vị triệu đồng). + Trong hình chóp đều, khẳng định nào sau đây đúng? A. Tất cả các cạnh bên bằng nhau. B. Tất cả các mặt bằng nhau. C. Tất cả các cạnh bằng nhau. D. Một cạnh đáy bằng cạnh bên. + Trong các mệnh đề sau mệnh đề nào đúng? A. Mỗi hình đa diện có ít nhất bốn đỉnh. B. Mỗi hình đa diện có ít nhất ba đỉnh. C. Số đỉnh của một hình đa diện lớn h n hoặc bằng số cạnh của nó. D. Số mặt của một hình đa diện lớn h n hoặc bằng số cạnh của nó.
Đề khảo sát chất lượng Toán 12 lần 1 năm 2020 - 2021 trường THPT Đội Cấn - Vĩnh Phúc
Ngày … tháng 11 năm 2020, trường THPT Đội Cấn, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng Toán 12 lần 1 năm học 2020 – 2021. Đề khảo sát chất lượng Toán 12 lần 1 năm 2020 – 2021 trường THPT Đội Cấn – Vĩnh Phúc mã đề 111 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2020 – 2021 trường THPT Đội Cấn – Vĩnh Phúc : + Một công ty cần xây một kho chứa hàng dạng hình hộp chữ nhật (bằng vật liệu gạch và xi măng) có thể tích 2000 m3, đáy là hình chữ nhật có chiều dài bằng hai lần chiều rộng. Người ta cần tính toán sao cho chi phí xây dựng là thấp nhất, biết giá xây dựng là 750.000 đồng/m2. Khi đó chi phí thấp nhất gần với số nào dưới đây? + Cho lăng trụ ABC.A’B’C’ diện tích đáy bằng 3 và chiều cao bằng 5. Gọi M, N, P lần lượt là trung điểm của AA’, BB’, CC’; G, G’ lần lượt là trọng tâm của hai đáy ABC, A’B’C’. Thể tích của khối đa diện lồi có các đỉnh là các điểm G, G’, M, N, P bằng? + Từ một hộp đựng 2019 thẻ đánh số thứ tự từ 1 đến 2019. Chọn ngẫu nhiên ra hai thẻ. Tính xác suất của biến cố A = “tổng số ghi trên hai thẻ nhỏ hơn 2002”.
Đề thi KSCL lần 1 Toán 12 năm 2020 - 2021 trường THPT Gia Bình 1 - Bắc Ninh
Ngày … tháng 10 năm 2020, trường THPT Gia Bình số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ nhất. Đề thi KSCL lần 1 Toán 12 năm 2020 – 2021 trường THPT Gia Bình 1 – Bắc Ninh mã đề 132 gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485. Trích dẫn đề thi KSCL lần 1 Toán 12 năm 2020 – 2021 trường THPT Gia Bình 1 – Bắc Ninh : + Cho khối lăng trụ ABC.A’B’C’, mặt phẳng (AB’C’) chia khối lăng trụ ABC.A’B’C’ thành: A. một khối chóp tam giác và một khối chóp tứ giác. B. hai khối chóp tứ giác. C. hai khối chóp tam giác. D. một khối chóp tam giác và một khối chóp ngũ giác. + Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau. Mệnh đề nào dưới đây đúng? A. Hàm số không có GTLN và không có GTNN. B. Hàm số có GTLN bằng 2 và GTNN bằng -3. C. Hàm số có GTLN bằng 2 và GTNN bằng -2. D. Hàm số có GTLN bằng 2 và không có GTNN. + Kim tự tháp Kê-ốp ở Ai Cập được xây dựng vào khoảng 2500 năm trước Công nguyên. Kim tự tháp này có hình dạng là một khối chóp tứ giác đều có chiều cao 147 m, cạnh đáy dài 230 m. Thể tích V của khối chóp đó là?