Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng lớp 10 môn Toán lần 1 năm 2021 2022 trường Hàn Thuyên Bắc Ninh

Nội dung Đề kiểm tra chất lượng lớp 10 môn Toán lần 1 năm 2021 2022 trường Hàn Thuyên Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng môn Toán lớp 10 lần 1 năm học 2021 – 2022 trường THPT Hàn Thuyên, tỉnh Bắc Ninh; đề thi có đáp án mã đề 168 269 370 471 572 673 774 875. Trích dẫn đề kiểm tra chất lượng Toán lớp 10 lần 1 năm 2021 – 2022 trường Hàn Thuyên – Bắc Ninh : + Cho tam giác ABC gọi điểm E là trung điểm của AB và I là trung điểm của CE. Tập hợp các điểm M thỏa mãn u MA MB MC 2 cùng phương với BC là? A. Đường thẳng đi qua I và vuông góc với BC. B. Đường thẳng đi qua I và song song với BC. C. Đường thẳng đi qua E và vuông góc với BC. D. Đường thẳng đi qua E và song song với BC. + Cho tam giác ABC có trọng tâm G điểm J thỏa mãn JA JB JC 2 3 0. Tập hợp các điểm M thỏa mãn 2 2 3 MA MB MC MA MB MC là A. Đường trung trực của BG. B. Đường tròn tâm G, bán kính GJ. C. Đường trung trực của JG. D. Đường tròn tâm J, bán kính JG. + Cho số 2 y ax bx c có đồ thị là một parabol như hình vẽ dưới đây: Gọi S là tập tất cả các giá trị của m để phương trình f x m 1 có tám nghiệm phân biệt. Chọn đáp án đúng trong các đáp án A, B, C, D sau? + Mệnh đề nào sau đây sai? A. G là trọng tâm ABC thì GA GB GC 0. B. ABCD là hình bình hành thì AC AB AD. C. Ba điểm A, B, C bất kì thì AC AB BC. D. I là trung điểm AB thì MI MA MB với mọi điểm M. + Nếu chu vi của một hình chữ nhật ABCD là 20 cm thì giá trị nhỏ nhất của đường chéo AC tính theo cm là?

Nguồn: sytu.vn

Đọc Sách

Đề thi khảo sát chất lượng lớp 10 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4
Nội dung Đề thi khảo sát chất lượng lớp 10 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4 Bản PDF Đề thi khảo sát chất lượng Toán lớp 10 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 7 bài tập tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Cho hàm số: y = x^2 – 4x + c a) Tìm c biết rằng đồ thị của hàm số là một Parabol đi qua điểm A(2;-1) b) Vẽ đồ thị của hàm số ứng với giá trị c tìm được + Cho tam giác đều ABC cạnh a (a > 0). MNPQ là hình chữ nhật nội tiếp tam giác ABC (như hình vẽ). Tính diện tích lớn nhất có thể đạt được của hình chữ nhật MNPQ theo a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là: x + 3y – 18 = 0, phương trình đường trung trực của đoạn BC là: 3x + 19y – 279 = 0, đỉnh C thuộc đường thẳng d: 2x – y + 5 = 0. Tìm tọa độ điểm A biết rằng góc BAC = 135 độ.