Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán lần 2 trường THCS Nguyễn Tri Phương Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán lần 2 trường THCS Nguyễn Tri Phương Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán lần 2 trường THCS Nguyễn Tri Phương Hà Nội Đề khảo sát chất lượng lớp 9 môn Toán lần 2 trường THCS Nguyễn Tri Phương Hà Nội Vào ngày thứ Hai, 01 tháng 06 năm 2020, trường THCS Nguyễn Tri Phương tại quận Ba Đình, thành phố Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán cho học sinh lớp 9. Kỳ thi này là lần thứ hai trong giai đoạn giữa học kỳ 2 của năm học 2019 - 2020. Bài thi gồm 01 trang đề bài với 05 bài toán dạng tự luận. Thời gian làm bài được giao là 90 phút. Đề bài được cấu trúc tương tự như các kỳ thi trước đó, mang đến cho học sinh cơ hội để thể hiện kiến thức và kỹ năng của mình trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá
Nội dung Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Bản PDF - Nội dung bài viết Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán để ôn thi tuyển sinh vào lớp 10 THPT năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào ngày 02 tháng 06 năm 2022. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán vào lớp 10 năm 2022 - 2023 của phòng GD&ĐT Thọ Xuân - Thanh Hoá: + Cho nửa đường tròn có tâm O, bán kính R, đường kính AB, I là điểm cố định thuộc đoạn thẳng OB. Vẽ đường thẳng d vuông góc với AB tại I, d cắt nửa đường tròn tại K. Lấy điểm M thuộc cung nhỏ BK, tia BM cắt đường thẳng d tại C, đoạn thẳng AM cắt đường thẳng d tại N, AC cắt nửa đường tròn tại D. a) Chứng minh tứ giác BMNI là tứ giác nội tiếp b) Chứng minh ba điểm B, N, D thẳng hàng và tính AD.AC + BM.BC theo R c) Chứng minh O’ luôn nằm trên một đường thẳng cố định khi M di chuyển trên cung nhỏ KB. + Trong hệ trục tọa độ Oxy, cho parabol (P): y = 2x^2 và đường thẳng (d): y = (m + 1)x – m + 3 (m là tham số ) a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B phân biệt với mọi giá trị của m b) Tìm giá trị m để 2y1 + 2y2 = (m + 1)x2 + 2 + 8. + Cho 3 số thực dương x, y, z thỏa mãn: x^2 + y^2 + z^2 = 1. Tìm giá trị nhỏ nhất của biểu thức: 2x^2y^2z^2 + y^2z^2x^2 + z^2x^2y^2. Đề thi năm nay đòi hỏi kiến thức và sự sáng tạo của các em học sinh. Chúc các em có kết quả tốt trong kỳ thi sắp tới!