Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020 2021 sở GD ĐT Hà Tĩnh

Nội dung Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020 2021 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020-2021 Đề thi học sinh giỏi tỉnh lớp 10 môn Toán năm 2020-2021 Đề thi học sinh giỏi tỉnh Toán lớp 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian cho học sinh làm bài thi là 180 phút, kỳ thi diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn một số câu hỏi trong đề thi học sinh giỏi tỉnh Toán lớp 10 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh: + Câu 1: Một cửa hàng kinh doanh xe máy điện mua vào với chi phí 23 triệu đồng và bán ra với giá 27 triệu đồng mỗi chiếc. Nếu giảm giá bán xe xuống 100 nghìn đồng mỗi chiếc, số lượng xe bán ra trong một năm sẽ tăng thêm 20 chiếc. Hỏi doanh nghiệp cần bán với giá mới là bao nhiêu để lợi nhuận thu được sau khi giảm giá là cao nhất? + Câu 2: Cho tam giác ABC có góc A = 30 độ, bán kính đường tròn nội tiếp tam giác là √3. Tính giá trị của T = (sin B)^2 - (cos C)^2 và bán kính đường tròn ngoại tiếp tam giác ABC. + Câu 3: Trong mặt phẳng tọa độ Oxy, cho A(2;3), B(-1;5) và đường thẳng d: 2x + y + 1 = 0. Tìm tọa độ điểm C thuộc đường thẳng d và tọa độ điểm D thuộc đoạn thẳng AC, biết tam giác ABC cân tại B và DC = √5/5. Đây là một đề thi mang tính chất thách thức, đòi hỏi học sinh có kiến thức sâu rộng và khả năng suy luận logic tốt để giải quyết các bài toán phức tạp. Hy vọng rằng các em sẽ đạt kết quả cao và phấn đấu học tập toàn diện hơn sau kỳ thi này.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 10 môn Toán năm 2012 2013 trường THPT Thuận An TT Huế
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm 2012 2013 trường THPT Thuận An TT Huế Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 năm 2012 – 2013 trường THPT Thuận An TT Huế Đề thi học sinh giỏi Toán lớp 10 năm 2012 – 2013 trường THPT Thuận An TT Huế Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 đề thi học sinh giỏi môn Toán năm học 2012 – 2013 của trường THPT Thuận An, tỉnh Thừa Thiên Huế. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm cho các bài toán. Trích dẫn một số câu hỏi từ đề thi: Cho phương trình \(2mx^2 + mx + m - 2 = 0\), trong đó \(m\) là tham số. Tìm giá trị của \(m\) để phương trình đã cho có một nghiệm. Tìm giá trị của \(m\) để phương trình đã cho có hai nghiệm, với một nghiệm gấp đôi nghiệm còn lại. Cho tam giác \(ABC\). Trên các cạnh \(AB\), \(BC\), \(CA\) lần lượt lấy điểm \(M\), \(N\), \(P\) sao cho \(\dfrac{AM}{AB} = \dfrac{BC}{2}\), \(\dfrac{BN}{BC} = \dfrac{AC}{3}\) và \(\dfrac{CP}{CA} = 2\). Chứng minh rằng hai tam giác \(ABC\) và \(MNP\) có cùng trọng tâm. Gọi \(a\), \(b\), \(c\) là độ dài ba cạnh của tam giác \(abc\), \(h_a\), \(h_b\), \(h_c\) lần lượt là độ dài ba đường cao tương ứng với ba cạnh đó, \(r\) là bán kính đường tròn nội tiếp tam giác đó. Hãy tính công thức liên quan giữa các đại lượng này. Đề thi này rất thú vị và mang tính thách thức cao đối với các em học sinh lớp 10. Hy vọng rằng đề thi và lời giải chi tiết sẽ giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả.
Đề thi KSCL lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Nông Cống 3 Thanh Hóa
Nội dung Đề thi KSCL lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Nông Cống 3 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Nông Cống 3, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 701 – 702 – 703 – 704. Trích dẫn Đề thi KSCL lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Nông Cống 3 – Thanh Hóa : + Một phân xưởng có hai máy đặc chủng A, B sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại 2 lãi 1,6 triệu dồng. Muốn sản xuất 1 tấn sản phẩm loại I dùng máy A trong 3 giờ và máy B trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II dùng máy A trong 1 giờ và máy B trong 1 giờ. Một máy không thể dùng để sản suất đồng thời 2 loại sản phẩm. Máy A làm việc không quá 6 giờ trong một ngày, máy B một ngày chỉ làm việc không quá 4 giờ. Số tiền lãi cao nhất một ngày là? + Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB 40 m CAB CBA 45 70. Vậy sau khi đo đạc và tính toán khoảng cách AC gần nhất với giá trị nào sau đây? + Cho tập hợp A = {đỏ; cam; tím; hồng; lam), B = {lục; hồng, chàm; tím}. Kết quả của phép toán A B là? File WORD (dành cho quý thầy, cô):