Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Hải Dương

Thứ Tư ngày 27 tháng 01 năm 2021, sở Giáo dục và Đào tạo UBND tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 bậc THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề). Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Hải Dương : + Tìm các số nguyên x, y thỏa mãn đẳng thức: 2×2 + y2 + 3xy + 3x + 2y + 3 = 0. + Cho a, b, c là các số nguyên thỏa mãn: (a – b)(b – c)(c – a) = a + b + c. Chứng minh a + b + c chia hết cho 27. + Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn (O;R). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O;R) (B, C là các tiếp điểm). Lấy điểm D thuộc đường tròn (O;R) sao cho BD song song với AO, đường thẳng AD cắt đường tròn (O;R) tại điểm thứ hai là E. Gọi M là trung điểm của AC. a. Chứng minh ME là tiếp tuyến của đường tròn (O;R). b. Từ D kẻ tiếp tuyến với đường tròn (O;R), tiếp tuyến này cắt ME tại T. Gọi r1, r2, r3 lần lượt là bán kính các đường tròn nội tiếp của OME, OTE, OMT. Chứng minh khi A thay đổi thì r1 + r2 + r3 luôn không đổi.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2024.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) có ba đường cao AD, BE, CF đồng quy tại H. Đường tròn đường kính AC cắt đoạn thẳng BH tại M. Trên đoạn thẳng HC lấy điểm N sao cho AM = AN. a) Chứng minh EB.EH = ED.EF. b) Chứng minh N thuộc đường tròn ngoại tiếp tam giác ABD. + Cho tam giác nhọn ABC (AB < AC) có hai đường cao AE, BD cắt nhau tại H. Đường trung trực của đoạn thẳng DH cắt AE tại M, cắt đường tròn ngoại tiếp tam giác BCD tại P và Q (P nằm giữa M và Q). a) Chứng minh MD là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD. b) Chứng minh APM + AQM = CBD. c) Đường thẳng AQ cắt đường tròn ngoại tiếp tam giác BCD tại F (F khác Q). Chứng minh APB = FPB. + Cho p là số nguyên tố. Tìm tất cả các số nguyên dương b sao cho nghiệm của phương trình bậc hai x2 – bx + bp = 0 là số nguyên.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Thái Nguyên : + Cho S là một tập hợp có 3 phần tử là ba số tự nhiên và thỏa mãn tính chất: Tổng của hai phần tử bất kỳ thuộc tập hợp S là một số chính phương. Hỏi ba phần tử của tập hợp S đều là các số tự nhiên lẻ có được không? Giải thích. + Cho tam giác ABC có ba góc nhọn (AB < BC < AC) nội tiếp đường tròn tâm O đường kính AD. Kẻ DE vuông góc với BC tại E. Gọi K là trung điểm của đoạn thẳng BC, M là trung điểm của đoạn thẳng AK. Đường thẳng qua điểm E và song song với đường thẳng AK cắt đường tròn tâm D bán kính DE tại điểm N (N khác E). Đường cao AH (H thuộc BC) của tam giác ABC cắt đường tròn tâm O đường kính AD tại điểm I (I khác A). a. Chứng minh rằng BCD = CBI và CH = BE. b. Dựng hình thang cân BMPC. Chứng minh rằng ba điểm P, E, N thẳng hàng. c. Chứng minh rằng bốn điểm B, N, C, M cùng thuộc một đường tròn.