Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng Toán 12 cuối năm 2019 - 2020 trường chuyên Lê Hồng Phong - Nam Định

Thứ Năm ngày 18 tháng 06 năm 2020, trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định tổ chức kỳ thi kiểm tra chất lượng môn Toán 12 cuối năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 12 cuối năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định mã đề 184 được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra chất lượng Toán 12 cuối năm 2019 – 2020 trường chuyên Lê Hồng Phong – Nam Định : + Sự tăng trưởng của một loại vi khuẩn được tính theo công thức S = A·e^rt, trong đó A là số lượng vi khuẩn lúc ban đầu, r là tỉ lệ tăng trưởng, t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 500 con và tốc độ tăng trưởng là 15% trong 1 giờ. Hỏi cần ít nhất bao nhiêu thời gian thì số lượng vi khuẩn sẽ tăng đến hơn 1000000 con (một triệu con)? [ads] + Cho hình nón có đường cao h = 5a và bán kính đáy r = 12a. Gọi (α) là mặt phẳng đi qua đỉnh của hình nón và cắt đường tròn đáy theo dây cung có độ dài 10a. Tính diện tích thiết diện tạo bởi mặt phẳng (α) và hình nón đã cho. + Xét các số thực a, b, c với a > 1 thỏa mãn phương trình (log a x)^2 − 2blog a √x + c = 0 có hai nghiệm thực phân biệt x1; x2 đều lớn hơn 1 và x1.x2 ≤ a. Tìm giá trị nhỏ nhất của biểu thức S = b(c + 1)/c.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Quốc gia 2016 môn Toán trường Đông Sơn 1 - Thanh Hóa lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Đông Sơn 1 – Thanh Hóa lần 3 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1. b) Tìm m để hàm số có 3 điểm cực trị. Câu 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn. Câu 3: a) Tìm tập hợp các điểm biểu diễn của số phức z thỏa mãn điều kiện. b) Giải phương trình mũ. Câu 4: Tính thể tích khối tròn xoay được tạo thành khi quay H quanh trục hoành. Câu 5: Viết phương trình mặt phẳng (Q) đi qua A, B đồng thời vuông góc với (P) và tìm điểm C thuộc (P) sao cho tam giác ABC là tam giác đều. Câu 6: a) Giải phương trình lượng giác. b) Giả sử thí sinh A chọn ngẫu nhiên các phương án. Tính xác suất để A được 4 điểm (lấy gần đúng đến 5 chữ số sau dấu phẩy). Câu 7: Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SC và AB. Câu 8: Tìm tọa độ các điểm A, B, C. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Lương Văn Cù - An Giang
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Lương Văn Cù – An Giang có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số trùng phương. Câu 2: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có tung độ bằng 3. Câu 3: a) Tìm số phức z. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: Tính khoảng cách giữa hai điểm A và B. Viết phương trình mặt phẳng (a) đi qua A và song song với mặt phẳng (P). Câu 6: a) Biến đổi thành tích biểu thức lượng giác. b) Một trường Đại học dự kiến tuyển sinh dựa vào tổng điểm của 3 môn trong kì thi chung đó và có ít nhất một trong hai môn là Toán hoặc Văn. Hỏi trường Đại học đó có bao nhiêu phương án tuyển sinh?. Câu 7: Tính theo a thể tích khối chóp S.ABC. Xác định góc a để thể tích khối chóp S.ABC lớn nhất . Câu 8: Viết phương trình đường tròn ngoại tiếp tam giác BMK, biết BN có phương trình 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. Câu 9: Giải hệ phương trình. Câu 10: Chứng minh bất đẳng thức.
Đề thi thử Quốc gia 2016 môn Toán trường Quảng Xương 3 - Thanh Hóa lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Quảng Xương 3 – Thanh Hóa lần 3 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm các điểm cực trị của đồ thị hàm số. Câu 3: a) Giải bất phương trình logarit. b) Giải phương trình mũ. Câu 4: Tính nguyên hàm Câu 5: Chứng minh trung điểm I của cạnh SC là tâm của mặt cầu ngoại tiếp hình chóp S ABC . và tính diện tích mặt cầu đó theo a. Câu 6: a) Giải phương trình lượng giác. b) Tính xác suất sao cho lớp nào cũng có học sinh được chọn và có ít nhất 2 học sinh lớp 12A. Câu 7: Tính theo a thể tích khối chóp S ABCD và khoảng cách giữa hai đường thẳng HK và SD. Câu 8: Tìm tọa độ đỉnh D. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 2 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường Nam Duyên Hà - Thái Bình lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Nam Duyên Hà – Thái Bình lần 3 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc 3. Câu 2: Tìm m để hàm số đạt cực tiểu tại điểm x = −1. Câu 3: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và các trục tọa độ. Câu 4: a) Tìm môđun của số phức z. b) Tính xác suất sao cho 4 sản phẩm được chọn thuộc không quá hai trong ba loại sản phẩm trên. Câu 5: a) Giải phương trình lượng giác. b) Giải phương trình mũ. Câu 6: Chứng minh 2 đường thẳng vuông góc và tính khoảng cách từ một điểm tới mặt phẳng. Câu 7: Giải phương trình vô tỉ chứa 1 căn. Câu 8: Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng d. Tìm tọa độ điểm B thuộc d thỏa mãn điều kiện về khoảng cách. Câu 9: Tìm toạ độ các đỉnh của hình chữ nhật. Câu 10: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 biến A.