Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Đức Thọ Hà Tĩnh

Nội dung Đề thi Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Đức Thọ Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi Olympic lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Đức Thọ Hà Tĩnh Đề thi Olympic lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Đức Thọ Hà Tĩnh Xin chào quý thầy cô và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi Olympic môn Toán cho học sinh lớp 8 năm học 2022-2023 của phòng Giáo dục và Đào tạo UBND huyện Đức Thọ, tỉnh Hà Tĩnh. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 24 tháng 03 năm 2023. Dưới đây là một số câu hỏi trong đề thi: Câu 1: Cho tam giác ABC có A = 120°, AB = 3 cm, AC = 6 cm. Hãy tính độ dài đường phân giác AD. Câu 2: Cho tam giác MNP đồng dạng với tam giác ABC biết AB = 15 cm, BC = 20 cm, CA = 30 cm. Tính độ dài các cạnh MN, NP và PM của tam giác MNP nếu chu vi của nó bằng 26 cm. Câu 3: Bốn số thực a, b, c, d thỏa mãn a/2 = b/4 = c/6 = d/(8 + b). Hỏi giá trị nhỏ nhất của tổng S = a + b + c + d bằng bao nhiêu? Hy vọng rằng, đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng giải các bài toán Toán một cách hiệu quả. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Tìm số x, y nguyên thỏa mãn: 22 3 2 2 2 2 x y xy x xy x y xy y y 3 3 3 6 6 70. + Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn, thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị, ta vẫn được một số chính phương. + Cho đoạn thẳng AB cố định có O là trung điểm. Trên đường thẳng vuông góc với AB tại A, lấy điểm C sao cho AC AO. Kẻ AK vuông góc CO tại K, điểm D đối xứng với A qua K. Đường thẳng qua O vuông góc với AB cắt BD tại E. Kẻ DH vuông góc với AB tại H, DH cắt BC tại I. a. Chứng minh: CD = EO b. Chứng minh: KI đi qua trung điểm của BD. c.Kẻ IN vuông góc với AC tại N, kẻ DM vuông góc với AC tại M, DM cắt CO tại J. Chứng minh tứ giác JNOI là hình bình hành. Khi C di chuyển (sao cho AC AO). Tính giá trị nhỏ nhất của 2 2 NI OJ.
Đề thi chọn HSG huyện Toán 8 năm 2021 - 2022 phòng GDĐT Sơn Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào thứ Bảy ngày 16 tháng 04 năm 2022.
Đề thi Olympic Toán 8 năm 2021 - 2022 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn đề thi Olympic Toán 8 năm 2021 – 2022 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho n là số tự nhiên có hai chữ số. Tìm n biết n + 2 và 2n đều là các số chính phương. + Cho hình vuông ABCD. Qua C kẻ đường thẳng d cắt tia AD, tia AB lần lượt tại E, F (AE < AF). Gọi M là giao điểm của DF và BC; N là giao điểm của BE và DC. a) Chứng minh: MC АВ b) Chứng minh MN // EF c) Kẻ AI vuông góc với EF (I EF). Gọi K là giao điểm BE và DF. Chứng minh A, K, I thẳng hàng. + Giả sử mỗi điểm trong mặt phẳng được tô bởi một trong hai màu xanh và đỏ. Chứng minh tồn tại một hình chữ nhật có các đỉnh được tô cùng màu.
Đề thi học sinh giỏi Toán 8 năm 2021 - 2022 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2021 – 2022 trường THCS Trần Mai Ninh – Thanh Hóa : + Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF cắt nhau tại H. Gọi M trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh ABC đồng dạng EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. + Cho tam giác PQR cân tại P. Trên cạnh PQ vẽ T sao cho QT = 2PT. Vẽ QG vuông góc với RT. Gọi M là trung điểm của PG. Tỉnh góc PMQ. + Cho ba số dương a b c với abc = 1. Tìm giá trị lớn nhất của biểu thức M?