Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên Toán Tin) năm 2021 2022 sở GD ĐT Bình Định

Nội dung Đề thi vào 10 môn Toán (chuyên Toán Tin) năm 2021 2022 sở GD ĐT Bình Định Bản PDF Sytu xin giới thiệu đến các giáo viên, học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán – Tin) năm học 2021 – 2022 của sở GD&ĐT Bình Định. Đề thi bao gồm các câu hỏi và bài toán đa dạng, kèm theo đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Lê Hồng Quốc.

Một số câu hỏi trong đề thi bao gồm:
1. Cho tập hợp A gồm 21 số tự nhiên khác nhau sao cho tổng của 11 số bất kỳ lớn hơn tổng của 10 số còn lại. Biết rằng các số 101 và 102 là thành viên của tập hợp A. Hãy tìm các số còn lại trong tập hợp A.
2. Tìm tất cả các số nguyên dương x sao cho x2 – x + 13 là số chính phương.
3. Cho tam giác ABC nội tiếp đường tròn tâm O, D là một điểm bất kỳ trên cạnh BC (D khác B và C). Gọi M, N lần lượt là trung điểm của các cạnh AB và AC. Đường thẳng MN cắt đường tròn (O) tại P, Q (theo thứ tự P, M, N, O). Câu bài toán yêu cầu chứng minh và tính toán tỷ số và tỉ lệ của các đoạn thẳng trong tam giác ABC.

Đề thi vào lớp 10 môn Toán (chuyên Toán – Tin) năm 2021 – 2022 của sở GD&ĐT Bình Định sẽ diễn ra vào ngày 11 tháng 06 năm 2021. Đây là cơ hội để các em học sinh thể hiện kiến thức và kỹ năng của mình trong môn học quan trọng này. Chúc các em học sinh thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn trên toàn quốc
Sách gồm các đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn từ năm 2000 đến nay. Các đề thi đều có lời giải chi tiết .
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hàm số y = ax + b (a ≠ 0) có đồ thị là đường thẳng d trên mặt phẳng tọa độ Oxy. Viết theo a và b phương trình đường thẳng (d′). Biết rằng (d) và (d′) vuông góc với nhau đồng thời cắt nhau tại một điểm thuộc trục hoành. + Cho tam giác ABC nội tiếp đường tròn O. Biết A = 60 độ; B và C là hai góc nhọn có số đo khác nhau. Vẽ các đường cao BE, CF của tam giác ABC (E, F lần lượt thuộc AC, AB). a. Chứng minh rằng góc BCF và góc BEF bằng nhau. [ads] b. Gọi I là trung điểm của BC. Chứng minh tam giác IEF là tam giác đều. c. Gọi K là trung điểm của EF. Chứng minh rằng IK song song OA. + Trong một hình vành khăn với các bán kính đường tròn là 10R và 8R. Xếp các hình tròn bán kính R tiếp xúc với cả hai đường tròn của hình vành khăn sao cho các hình tròn này không chồng lấn nhau. Hỏi xếp được nhiều nhất bao nhiêu hình tròn như thế?
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT Lạc Thủy – Hòa Bình (Ban A) gồm 25 bài toán theo hình thức điền kết quả.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho parabol 2 (P): y = x^2, đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, (d) luôn cắt (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện /x1 – x2/ >= 2. [ads] + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2