Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi giao lưu HSG lớp 7 môn Toán năm 2018 - 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc Đề thi giao lưu HSG lớp 7 môn Toán năm 2018 - 2019 phòng GD ĐT Yên Lạc Vĩnh Phúc Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến các bạn đề thi giao lưu học sinh giỏi môn Toán lớp 7 năm học 2018 - 2019 của phòng GD&ĐT huyện Yên Lạc, tỉnh Vĩnh Phúc. Đề thi bao gồm các câu hỏi sau: 1. Cho ba hình chữ nhật, biết diện tích của hình thứ nhất và diện tích của hình thứ hai tỉ lệ với 4 và 5, diện tích hình thư hai và diện tích hình thứ ba tỉ lệ với 7 và 8, hình thứ nhất và hình thứ hai có cùng chiều dài và tổng các chiều rộng của chúng là 27 cm, hình thứ hai và hình thứ ba có cùng chiều rộng, chiều dài của hình thứ ba là 24 cm. Hãy tính diện tích của mỗi hình chữ nhật đó. 2. Xét hình bên: Ta viết các số 1, 2, 3, 4,...9 vào vị trí của 9 điểm trong hình vẽ bên sao cho mỗi số chỉ xuất hiện đúng một lần và tổng ba số trên một cạnh của tam giác bằng 18. Hỏi có bao nhiêu cách viết phân biệt? Và tại sao? 3. Tìm số hữu tỉ x sao cho tổng của số đó với nghịch đảo của nó có giá trị là một số nguyên. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức, kỹ năng giải quyết vấn đề. Chúc các em thi tốt và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 08 tháng 04 năm 2022. Trích dẫn đề thi Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Biết trung bình cộng của 16 số bằng 4. Thêm vào số thứ mười bảy thì trung bình cộng của chúng bằng 5. Tìm số thứ mười bảy? + Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s trên cạnh thứ ba với vận tốc 4 m/s, trên cạnh thứ tư với vận tốc 3 m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. + Cho tam giác ABC vuông cân tại A; M là trung điểm của cạnh BC. Lấy điểm D bất kỳ thuộc đoạn thẳng BM. Kẻ BH vuông góc với AD (H thuộc AD), CI vuông góc với AD (I thuộc AD). Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) ΔΑΗΒ = ΔCIA. c) IM là tia phân giác của góc CID.
Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An.
Đề thi HSG cấp trường Toán 7 năm 2020 - 2021 trường THCS Cẩm Bình - Hà Tĩnh
Đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh : + Tam giác ABC có các tia phân giác của góc B và góc C cắt nhau tại O. Tính số đo của góc A biết BOC = 120°. + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC.
Đề thi học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Trực Ninh - Nam Định
Đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định : + Cho ABC vuông tại A có B 2C. Kẻ AH BC (H BC). Trên tia HC lấy D sao cho HD HB. Từ C kẻ đường thẳng CE vuông góc với đường thẳng AD (E AD). a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh DH DE HE AC. c) So sánh 2 HE và 2 2 4 BC AD. d) Gọi K giao AH và CE, lấy điểm I bất kì thuộc đoạn thẳng HE I khác H; I khác E. Chứng minh 3 2 AC IA IK IC. + Chứng minh đa thức sau không có nghiệm. + Chứng minh rằng 2021 10 539 9 có giá trị là một số tự nhiên.