Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 11 môn Toán năm 2020 2021 trường THPT Lưu Hoàng Hà Nội

Nội dung Đề thi HSG lớp 11 môn Toán năm 2020 2021 trường THPT Lưu Hoàng Hà Nội Bản PDF Đề thi HSG Toán lớp 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán lớp 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu triệu đồng (kết quả làm tròn đến hai chữ số phần thập phân). + Cho đa giác đều 18 cạnh. Nối tất cả các đỉnh với nhau. Chọn hai tam giác trong số các tam giác vuông tạo thành từ 3 đỉnh trong 18 đỉnh. Tính xác suất để chọn được hai tam giác có cùng chu vi. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt đáy, góc giữa SB và mặt đáy bằng 60. Gọi N là trung điểm của BC. a) Tính cosin của góc giữa hai đường thẳng SD và AN. b) Gọi H, K là hai điểm lần lượt thuộc các đường thẳng SB và DN sao cho HK SB HK DN. Tính độ dài đoạn HK theo a.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic lớp 11 môn Toán năm 2019 2020 trường THPT Mỹ Đức A Hà Nội
Nội dung Đề thi Olympic lớp 11 môn Toán năm 2019 2020 trường THPT Mỹ Đức A Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic Toán lớp 11 năm học 2019 – 2020 trường THPT Mỹ Đức A – Hà Nội, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán lớp 11 năm 2019 – 2020 trường THPT Mỹ Đức A – Hà Nội : + Cho mặt phẳng (α) và hai đường thẳng chéo nhau d1, d2 cắt (α) tại A, B. Gọi ∆ là đường thẳng thay đổi luôn song song với (α), cắt d1 tại M, cắt d2 tại N. Đường thẳng d qua N luôn song song với d1 cắt (α) tại N’. a) Tứ giác AMNN’ là hình gì? b) Tìm tập hợp các điểm N’. c) Gọi O là trung điểm của AB, I là trung điểm của MN. Chứng minh rằng OI là đường thẳng cố định khi M di động. [ads] + Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;20]. Tính xác suất để tổng các lập phương của ba số được viết ra chia hết cho 3. + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG lớp 11 môn Toán năm học 2019 2020 cụm Tân Yên Bắc Giang
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm học 2019 2020 cụm Tân Yên Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán lớp 11 năm học 2019 – 2020 cụm Tân Yên, tỉnh Bắc Giang; đề thi gồm có 40 câu trắc nghiệm (chiếm 14 điểm) và 03 câu tự luận (chiếm 06 điểm), học sinh có 120 phút để làm bài, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán lớp 11 năm học 2019 – 2020 cụm Tân Yên – Bắc Giang : + Trong tỉnh A tỉ lệ học sinh giỏi môn văn là 9%, học sinh giỏi môn toán là 12% và học sinh giỏi cả hai môn là 7%. Chọn ngẫu nhiên một học sinh của tỉnh. Tính xác suất để học sinh đó học giỏi Văn hoặc học giỏi Toán. + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là? A. Tam giác MNE. B. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. C. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. D. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. [ads] + Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là 13,5 triệu đồng/quý, và kể từ quý làm việc thứ hai, múc lương sẽ được tăng thêm 500.000 đồng mỗi quý. Tính tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty? + Từ các số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên, mỗi số có 6 chữ số đồng thời thỏa mãn điều kiện :sáu số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số sau một đơn vị? + Cho hai dãy ghế đối diện nhau, mỗi dãy có năm ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam và 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ.
Đề thi thử HSG tỉnh lớp 11 môn Toán năm 2019 2020 trường Nguyễn Duy Trinh Nghệ An
Nội dung Đề thi thử HSG tỉnh lớp 11 môn Toán năm 2019 2020 trường Nguyễn Duy Trinh Nghệ An Bản PDF Nhằm chuẩn bị cho kỳ thi chọn học sinh giỏi môn Toán lớp 11 cấp tỉnh do sở Giáo dục và Đào tạo Nghệ An tổ chức, vừa qua, trường THPT Nguyễn Duy Trinh – Nghệ An đã tổ chức kỳ thi thử học sinh giỏi tỉnh Toán lớp 11 năm học 2019 – 2020. Đề thi thử HSG tỉnh Toán lớp 11 năm 2019 – 2020 trường Nguyễn Duy Trinh – Nghệ An gồm có 01 trang với 04 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử HSG tỉnh Toán lớp 11 năm 2019 – 2020 trường Nguyễn Duy Trinh – Nghệ An : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC vuông tại C, có phân giác trong AD với D(7/2;-7/2) thuộc BC. Gọi E và F lần lượt thuộc các cạnh AB và AC sao cho AE = AF. Đường thẳng EF cắt BC tại K. Biết E(3/2;-5/2), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng AK là x – 2y − 3 = 0. Viết phương trình các cạnh của tam giác ABC. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng d: x – y = 0 và đường tròn (T): (x – 1)^2 + (y + 4)^2 = 5. Từ điểm M thuộc đường thẳng d kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD đến đường tròn (T) với C nằm giữa M và D; AB cắt CD tại N. Tìm tọa độ điểm M biết rằng CD = 1 và ND = 5/9. + Có bao nhiêu số tự nhiên có 4 chữ số sao cho trong mỗi số đó có một chữ số xuất hiện hai lần, các chữ số còn lại xuất hiện không quá một lần. File WORD (dành cho quý thầy, cô):
Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Xuân Ôn Nghệ An
Nội dung Đề thi HSG lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Xuân Ôn Nghệ An Bản PDF Đề thi HSG Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Xuân Ôn – Nghệ An (vòng 2) gồm có 01 trang với 05 bài toán tự luận, học sinh có 150 phút để làm bài, kỳ thi nhằm tuyển chọn các em học sinh khối 11 giỏi Toán vào đội tuyển học sinh giỏi môn Toán lớp 11 của nhà trường, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Xuân Ôn – Nghệ An : + Cho tứ diện ABCD, trên hai cạnh AD và BC lần lượt lấy các điểm M và N sao cho AM/MD = CN/NB = 1/2. Hai điểm E, F lần lượt thuộc BM và DN sao cho EF // AC. Tính tỉ số EF/AC. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang với AD // BC và AD = 2BC. Gọi O là giao điểm của AC và BD, điểm M thay đổi nằm trong hình thang sao cho OM không song song với cạnh nào của hình thang. Qua M dựng đường thẳng song song với SO cắt các mp(SAB), (SBC), (SCD) và (SDA) lần lượt tại các điểm E, F, G và H. Chứng minh rằng: MF + 2(ME + MG) + 4MH = 9SO. + Gọi S là tập tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số trong tập S. Tính xác suất để số được chọn chia hết cho 45. File WORD (dành cho quý thầy, cô):