Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 do phòng Giáo dục và Đào tạo Lương Tài tổ chức gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút, kỳ thi sẽ diễn ra vào ngày 13 tháng 04 năm 2021. Đề thi này được thiết kế nhằm đánh giá năng lực và kiến thức của học sinh lớp 7 trong môn Toán. Với bốn dạng bài toán khác nhau, kỳ thi đề cao khả năng tư duy, logic và khéo léo trong giải quyết vấn đề. Học sinh sẽ được đánh giá dựa trên khả năng áp dụng kiến thức học tập vào thực tế và khả năng giải quyết vấn đề theo cách sáng tạo. Tham gia kỳ thi HSG cấp huyện Toán là một cơ hội để học sinh thể hiện khả năng của mình, học hỏi thêm kinh nghiệm từ việc giải quyết các bài toán phức tạp. Kỳ thi không chỉ là cơ hội để học sinh thách thức bản thân mình mà còn là dịp để họ trau dồi kiến thức và kỹ năng trong môn Toán. Chúng ta hy vọng rằng kỳ thi sẽ mang lại những trải nghiệm tích cực và ý nghĩa cho học sinh, giúp họ phát triển không chỉ về kiến thức mà còn về tư duy và kỹ năng giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Quốc Oai – Hà Nội : + Nhà trường thành lập 3 đội thi tuyên truyền Văn hoá ứng xử. Trong đó, 2 3 số học sinh đội I bằng 8 11 số học sinh đội II và bằng 4 5 số học sinh đội III. Biết rằng số học sinh đội I ít hơn tổng số học sinh của đội II và đội III là 18 học sinh. Tính số học sinh của mỗi đội. + Một chiếc hộp có 12 quả bóng có kích thước và khối lượng như nhau. Mỗi quả bóng được ghi một trong các số khác nhau từ 1 đến 12. Lấy ngẫu nhiên một quả bóng trong hộp. Xét biến cố “số xuất hiện trên quả bóng là số nguyên tố”. Tính xác suất của biến cố trên. + Có 6 túi lần lượt chứa 18, 19, 21, 23, 25, 34 quả bóng. Có 5 túi chứa bóng màu đỏ, túi còn lại chứa bóng màu xanh. Bạn Quốc lấy 3 túi, bạn Oai lấy 2 túi, còn lại túi chứa bóng xanh. Khi đó, tổng số bóng của Quốc gấp đôi tổng số bóng của Oai. Hỏi: a/ Số bóng màu xanh? b/ Bạn Quốc lấy 3 túi chứa những số bóng nào?
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Phú Vang - TT Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Phú Vang, tỉnh Thừa Thiên Huế. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Phú Vang – TT Huế : + Cho n là số tự nhiên sao cho n chia 7 dư 3 và n chia 3 dư 1. Chứng minh rằng n chia 21 dư 10. + An và Bình cùng chơi trò chơi bốc bi. Ban đầu trên bàn có n viên bi, An và Bình lần lượt bốc một số bi trên bàn sao cho số bi bốc mỗi lượt từ một đến bốn viên. An là người bốc đầu tiên, người cuối cùng không còn bi để bốc là người thua cuộc. a) Chứng minh rằng khi n = 13 thì An luôn có cách bốc để là người chiến thắng. b) Chứng minh rằng khi n = 25 thì Bình luôn có cách bốc để là người chiến thắng. + Cho tam giác ABC vuông tại A và ABC = 2.ACB, tia phân giác góc A cắt BC tại I. Trên cạnh AC lấy điểm D sao cho AD = AB. a) Tính số đo góc ABC và chứng minh IB = ID. b) Gọi E là giao điểm của AB và ID. Chứng minh AIE = AIC và BD song song với EC. c) Chứng minh AC = AB + BI.
Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT Yên Định - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Yên Định, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 26 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT Yên Định – Thanh Hóa : + Cho các số abcd thỏa mãn: abcd chia hết cho 3. Chứng minh rằng: b c cũng chia hết cho 3. + Cho a, b là hai số tự nhiên khác 0. Chứng minh rằng: Nếu a ab a2b là các số nguyên tố lớn hơn 3 thì b chia hết cho 6. + Cho ABC cân tại A, trên cạnh BC lấy điểm D (D không trùng với B và C), trên tia đối của tia CB lấy điểm E sao cho BD = CE, qua D kẻ đường thẳng vuông góc với BC cắt AB tại M, qua E kẻ đường thẳng vuông góc với BC cắt AC tại N. 1. Chứng minh rằng: DM = EN. 2. Chứng minh rằng đường thẳng BC cắt MN tại trung điểm I của MN. 3. Đường thẳng vuông góc với MN tại I cắt tia phân giác của BAC tại O.
Đề học sinh năng khiếu Toán 7 năm 2023 - 2024 phòng GDĐT Thanh Thủy - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh năng khiếu môn Toán 7 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Thủy, tỉnh Phú Thọ; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề học sinh năng khiếu Toán 7 năm 2023 – 2024 phòng GD&ĐT Thanh Thủy – Phú Thọ : + Anh Pi dùng các chữ số từ 1 đến 8, mỗi số chỉ dùng một lần để tạo ra hai số tự nhiên có 4 chữ số. Hỏi tổng của hai số này lớn nhất bằng bao nhiêu? + Ba tổ công nhân A, B, C phải sản xuất cùng một số lượng sản phẩm như nhau. Thời gian ba tổ hoàn thành kế hoạch theo thứ tự là 12 ngày, 15 ngày, 21 ngày. Tổ A nhiều hơn tổ C là 30 công nhân. Hỏi tổ A nhiều hơn tổ B bao nhiêu công nhân? (Biết rằng năng suất lao động của các công nhân là như nhau). + Cho tam giác ABC vuông tại A có I là giao điểm ba đường phân giác của tam giác. Từ C kẻ đường vuông góc với tia BI cắt tia BI tại H và cắt tia BA tại D. Khi đó a) 0 BIC 145. b) BH là đường trung tuyến của tam giác BCD. c) Đường thẳng kẻ từ D đi qua giao điểm của BH và CA thì vuông góc với BC. d) Tam giác BCD đều.