Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023 2024 trường THCS Tân Thành Nghệ An

Nội dung Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023 2024 trường THCS Tân Thành Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023-2024 trường THCS Tân Thành Nghệ An Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023-2024 trường THCS Tân Thành Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi cấp trường môn Toán lớp 9 vòng 3 năm học 2023-2024 của trường THCS Tân Thành, tỉnh Nghệ An. Đề thi này bao gồm các câu hỏi thú vị và thách thức, kèm theo đáp án và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi đáng chú ý trong đề thi: Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. Hãy chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. Hãy chứng minh rằng BH = AC.cotABC trong tam giác ABC. Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng MP/MQ. Trong một buổi gặp mặt có 294 người tham gia, những người quen nhau bắt tay nhau. Biết nếu A bắt tay B thì một trong hai người A và B bắt tay không quá 6 lần. Hỏi có nhiều nhất bao nhiêu lượt bắt tay diễn ra? Chứng minh rằng A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0. Đề thi Toán HSG lớp 9 vòng 3 năm 2023-2024 của trường THCS Tân Thành Nghệ An là cơ hội để các em thử thách bản thân, rèn luyện tư duy logic và khả năng giải quyet vấn đề. Chúc các em học sinh thành công và tự tin trước mỗi câu hỏi!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 - 2016 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 06/03/2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 - 2015 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 – 2015 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 05/04/2015, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2014 - 2015 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2014 – 2015 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 04 tháng 03 năm 2015; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2014 – 2015 sở GD&ĐT Ninh Bình : + Cho 3 số thực không âm x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức A = 2 2 2 22 2 232 232 32 x xy y y yz z z zx x. + Cho đường tròn tâm O, dây cung BC cố định. Điểm A trên cung nhỏ BC, A không trùng với B, C và điểm chính giữa của cung nhỏ BC. Gọi H là hình chiếu của A trên đoạn thẳng BC; E, F thứ tự là hình chiếu của B và C trên đường kính AA’. Chứng minh rằng: a) Hai tam giác HEF và ABC đồng dạng với nhau. b) Hai đường thẳng HE và AC vuông góc với nhau. c) Tâm đường tròn ngoại tiếp tam giác HEF là điểm cố định khi A chuyển động trên cung nhỏ BC. + Cho tam giác ABC vuông cân đỉnh A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 - 2014 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2013 – 2014 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 09/03/2014, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.