Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 2 Toán 9 năm 2023 - 2024 trường THCS Giảng Võ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2023 – 2024 trường THCS Giảng Võ – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Một mảnh đất có dạng hình chữ nhật. Nếu tăng chiều dài thêm 3 m và giảm chiều rộng 2 m thì diện tích mảnh đất không đổi. Nếu tăng mỗi chiều thêm 1 m thì diện tích mảnh đất sẽ tăng thêm 23 m2. Tính chiều dài và chiều rộng của mảnh đất. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ đường tròn tâm O với đường kính BC cắt các đoạn thẳng AB, AC lần lượt tại các điểm M và N. Gọi H là giao điểm của hai đường thẳng BN và CM. 1) Chứng minh tứ giác AMHN là tứ giác nội tiếp. 2) Chứng minh NA.NC = NH.NB. 3) Lấy I là trung điểm của đoạn thẳng MN. Gọi E là giao điểm của đường thẳng MN và tiếp tuyến của đường tròn (O) tại điểm C. Đường thẳng đi qua điểm C và song song với BN cắt đường thẳng AB tại điểm K. Chứng minh NIC = EOC và ba điểm O, E, K là ba điểm thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề giữa kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình; đề thi được biên soạn theo cấu trúc 20% trắc nghiệm kết hợp 80% tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Ninh Bình : + Cho hàm số y = ax2 (a ≠ 0) có đồ thị là parabol (P). 1) Tìm a biết parabol (P) đi qua điểm A(2;-2). 2) Vẽ đồ thị của hàm số y = ax2 với a vừa tìm được ở ý trên. + Giải bài toán bằng cách lập hệ phương trình: Để chuẩn bị cho năm học mới, học sinh hai lớp 9A, 9B ủng hộ thư viện của nhà trường được 738 quyển sách, gồm hai loại: sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A ủng hộ 6 quyển sách giáo khoa và 3 quyển sách tham khảo; mỗi học sinh lớp 9B ủng hộ 5 quyển sách giáo khoa và 4 quyển sách tham khảo. Biết số sách giáo khoa nhiều hơn số sách tham khảo là 166 quyển. Tính số học sinh lớp 9A, 9B? + Cho nửa đường tròn tâm O, đường kính AB. C là một điểm nằm giữa O và A. Đường thẳng vuông góc với AB tại C, cắt nửa đường tròn (O) tại I. Lấy điểm K bất kì nằm trên đoạn thẳng CI (K khác C, K khác I), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt tia CI tại D. 1) Chứng minh tứ giác ACMD nội tiếp. 2) Chứng minh: CK.CD = CA.CB. 3) Gọi N là giao điểm của AD và nửa đường tròn (O). Chứng minh ba điểm B, K, N thẳng hàng.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Tây Mỗ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Tây Mỗ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn cửa cho một ngôi nhà trong 2 ngày thì xong việc. Nếu người thứ nhất làm trong 4 ngày rồi nghỉ và người thứ hai làm tiếp trong 1 ngày thì xong việc. Hỏi nếu mỗi người làm một mình thì bao lâu xong việc? + Một tàu ngầm đang ở trên mặt biển thì lặn xuống theo phương tạo với mặt nước biển một góc 20°. Hỏi nếu tàu chuyển động theo phương lặn xuống được 200m thì nó ở độ sâu bao nhiêu mét so với mặt nước biển? + Từ điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA; MB (A, B là hai tiếp điểm) và cát tuyến MEK (tia ME nằm giữa hai tia MO và MA). Gọi I là trung điểm của EK a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh: MK.ME = MA2 từ đó chứng minh: ME.MK < MO2. c) Gọi S là giao điểm của MK và AB. Chứng minh MIA đồng dạng BIS và IA.IB = SA.SB + IS2.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 90 phút; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô đi từ tỉnh A đến tỉnh B với một vận tốc đã định. Nếu vận tốc tăng thêm 10 km/h thì thời gian đi được sẽ giảm 1 giờ. Nếu vận tốc giảm bớt 20 km/h thì thời gian đi sẽ tăng thêm 4 giờ. Tính vận tốc và thời gian dự định của ô tô. + Cho hệ phương trình với m là tham số. a. Giải hệ phương trình với m = 2. b. Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x + y = 5. + Cho đường tròn (O;R), BC là dây không đi qua tâm. Các tiếp tuyến của đường tròn tâm O tại B và C cắt nhau ở điểm A. Lấy M thuộc cung nhỏ BC. Kẻ MI, MK, MH lần lượt vuông góc với BC, AB, AC. Chứng minh rằng: 1. Tứ giác BIMK nội tiếp đường tròn. 2. Chứng minh MH.MK = MI2. 3. Gọi BM cắt KI tại E, CM cắt IH tại F. Chứng minh: FE // BC và FE là tiếp tuyến của đường tròn ngoại tiếp tam giác MHF.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Huy Tưởng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Huy Tưởng, huyện Đông Anh, thành phố Hà Nội; đề thi hình thức tự luận 100% với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Huy Tưởng – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Hai tổ làm chung một công việc thì sau 6 giờ sẽ xong. Nếu Tổ I làm trong 5 giờ, Tổ II làm trong 2 giờ thì làm xong 8/15 công việc. Tính thời gian mỗi tổ làm riêng để xong công việc. + Cho Parabol (P): y = x2 và đường thẳng (d): y = 3x + m. a. Vẽ đồ thị (P) trên hệ trục tọa độ Oxy; tìm giao điểm của (d) và (P) bằng phương pháp đại số khi m = -2. b. Tìm m để đường thẳng (d) và Parabol (P) cắt nhau tại hai điểm phân biệt. + Cho đường tròn (O; R) và điểm P ở ngoài (O). Qua P kẻ các tiếp tuyến PA, PB với (O) trong đó A, B là các tiếp điểm. Đường thẳng PO cắt AB tại H và cắt cung lớn AB của đường tròn (O) tại C. Kẻ BE vuông góc AC tại E. Gọi M là trung điểm của BE. Tia CM cắt (O) tại điểm thứ hai là N a. Chứng minh tứ giác PAOB nội tiếp. b. Chứng minh HM // AC và HN vuông góc NB. c. Gọi giao điểm của BN và PC là K. Chứng minh K là trung điểm của đoạn thẳng PH.