Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 12 năm 2018 - 2019 trường THPT Lê Văn Hưu - Thanh Hóa

giới thiệu đến bạn đọc nội dung đề thi KSCL Toán 12 năm 2018 – 2019 trường THPT Lê Văn Hưu – Thanh Hóa, kỳ thi được tổ chức tại trường vào ngày 13/01/2019 nhằm kiểm tra quá trình ôn tập chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán của học sinh khối 12, đề có mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, cấu trúc đề bám sát đề tham khảo môn Toán 2019 của Bộ Giáo dục và Đào tạo, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 năm 2018 – 2019 trường THPT Lê Văn Hưu – Thanh Hóa : + Một trang trại chăn nuôi dự định xây dựng một hầm biogas với thể tích 12 m3 để chứa chất thải chăn nuôi và tạo khí sinh học. Dự kiến hầm chứa có dạng hình hộp chữ nhật có chiều sâu gấp rưỡi chiều rộng. Hãy xác định các kích thước đáy (dài, rộng) của hầm biogas để thi công tiết kiệm nguyên vật liệu nhất (không tính đến bề dày của thành bể). Tính kích thước (dài; rộng – tính theo đơn vị m, làm tròn đến 2 chữ số thập phân sau dấu phẩy) phù hợp yêu cầu. + Cho tứ diện đều ABCD có mặt cầu nội tiếp là (S1) và mặt cầu ngoại tiếp là (S2), hình lập phương ngoại tiếp (S2) và nội tiếp trong mặt cầu (S3). Gọi r1, r2, r3 lần lượt là bán kính các mặt cầu (S1), (S2), (S3). Khẳng định nào sau đây đúng? (Mặt cầu nội tiếp tứ diện là mặt cầu tiếp xúc với tất cả các mặt của tứ diện, mặt cầu nội tiếp hình lập phương là mặt cầu tiếp xúc với tất cả các mặt của hình lập phương). [ads] + Cho hình chóp tứ giác đều có cạnh đáy bằng 1, chiều cao bằng 2. Xét đa diện lồi H có các đỉnh là trung điểm tất cả các cạnh của hình chóp đó (tham khảo hình vẽ). Tính thể tích của H. + Một người gửi 300 triệu đồng vào ngân hàng theo thế thức lãi kép kì hạn 1 quý, với lãi suất 1,75%/một quý. Hỏi sau ít nhất bao nhiêu tháng người gửi có ít nhất 500 triệu đồng (bao gồm cả vốn lẫn lãi) từ số vốn ban đầu? (Giả sử lãi suất không thay đổi). + Tham số m thuộc khoảng nào dưới đây để đồ thị hàm số y = x^4 – 2mx^2 + 2m + m^4 có cực đại, cực tiểu mà các điểm cực trị này tạo thành một tam giác có diện tích bằng 1?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND thành phố Hải Phòng (mã đề thi 112), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022 sắp tới; kỳ thi được diễn ra vào thứ Ba ngày 24 tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Trong không gian Oxyz, cho điểm A(13;–7;–13), B(1;–1;5) và C(1;1;–3). Xét các mặt phẳng (P) đi qua C sao cho A và B nằm cùng phía so với (P). Khi d(A;(P)) + 2d(B;(P)) đạt giá trị lớn nhất thì (P) có dạng ax + by + cz + 3 = 0. Giá trị của a + b + c bằng? + Gọi (H) là hình phẳng giới hạn bởi các đường y = (x − 3)2, trục tung và trục hoành. Gọi k1, k2 (k1 > k2) là hệ số góc của hai đường thẳng cùng đi qua điểm A(0;9) và chia (H) làm ba phần có diện tích bằng nhau. Tính k1 – k2. + Cho hàm số y = f(x) có đạo hàm trên R và f'(x) = (x + 1)(x − 2). Tính tổng tất cả các giá trị nguyên của m để hàm số y = f(|2×3 − 3×2 − 12x + m|) có nhiều điểm cực trị nhất.
Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi nhằm kiểm tra kiến thức đối với học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2022 môn Toán. Trích dẫn đề khảo sát chất lượng Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z – 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;–4); B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (a): ax + by − z + c = 0. Khi đó a − b + c bằng? + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 3m + 10 = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm z1 và z2 không phải số thực thỏa mãn |z1| + |z2| =< 8? + Cho a và b là hai số thay đổi thoả mãn a > 1; b > 1 và a + b = 12. Giả sử x1; x2 là hai nghiệm của phương trình: logax.logbx − logax − logbx − 1 = 0. Giá trị lớn nhất của biểu thức P = x1.x2 là?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?