Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán thi tốt nghiệp THPT 2024 trường THPT Hàm Rồng - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán thi tốt nghiệp THPT năm học 2023 – 2024 trường THPT Hàm Rồng, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Trích dẫn Đề KSCL Toán thi tốt nghiệp THPT 2024 trường THPT Hàm Rồng – Thanh Hóa : + Để dự báo dân số của một quốc gia, người ta sử dụng công thức n r S Ae trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hàng năm. Năm 2017, dân số Việt nam là 93671600 người (Tổng cục Thống kê, Niên giám thống kê 2017, Nhà xuất bản Thống kê, Tr 79). Giả sử tỉ lệ tăng dân số hàng năm không đổi là 0,81%, dự báo dân số Việt nam năm 2035 là bao nhiêu người (kết quả làm tròn đến chữ số hàng trăm)? + Nhà trường dự định làm một vườn hoa dạng elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ bên dưới. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là 8 m và 4 m 1 F F2 là hai tiêu điểm của elip. Phần A, B dùng để trồng hoa, phần C, D dùng để trồng cỏ. Kinh phí để trồng mỗi mét vuông hoa và cỏ lần lượt là 250000 đ và 150000 đ. Tính tổng tiền để hoàn thành vườn hoa trên (làm tròn đến hàng nghìn). + Từ một chiếc đĩa tròn bằng thép có bán kính R m 6 một người thợ làm cái phễu bằng cách cắt đi một hình quạt của chiếc đĩa này và ghép phần còn lại thành hình nón. Cung tròn của hình quạt bị cắt đi phải bằng bao nhiêu độ để hình nón tạo thành có thể tích lớn nhất?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 12 lần 4 năm 2020 - 2021 trường THPT Thành Nhân - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 12 lần 4 năm học 2020 – 2021 trường THPT Thành Nhân – thành phố Hồ Chí Minh; đề thi có đáp án mã đề 101. Trích dẫn đề KSCL Toán 12 lần 4 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM : + Cho đồ thị hàm số 3 2 6 5 y f x ax bx cx cắt đường thẳng d y g x tại ba điểm A B C với xA 3, yB 0, xC 3 như hình vẽ. Gọi H K lần lượt là hình chiếu của A C lên trục Ox. Biết rằng 169 25 ABH BCK S S và diện tích phần hình phẳng (tô đậm) giới hạn bởi đồ thị y f x y g x x x B x 3 là 775 972 S. Giá trị f(4) bằng? + Cho hình nón có đỉnh S và chiều cao bằng a 2. Lấy hai điểm M N nằm trên đường tròn đáy sao cho tam giác SMN là tam giác đều và có diện tích bằng 2 3 3 4 a (tham khảo hình vẽ). Mặt phẳng SMN chia mặt xung quanh nón thành hai phần. Tính diện tích phần bề mặt xung quanh của hình nón có đáy là cung nhỏ MN (phần tô đậm). + Trong không gian Oxyz, cho hai điểm A(4;5;1), B(12;-1;5) và mặt phẳng 10 0 P z. Xét mặt cầu S đi qua điểm A, đồng thời tiếp xúc cả hai mặt phẳng P và Oxy. Lấy điểm M nằm trên mặt cầu S. Độ dài đoạn thẳng BM ngắn nhất bằng?
Đề KSCL Toán thi tốt nghiệp THPT 2021 lần 3 trường chuyên Lam Sơn - Thanh Hóa
Thứ Bảy ngày 29 tháng 05 năm 2021, trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ ba, hướng đến kỳ thi tốt nghiệp Trung học Phổ thông Quốc gia môn Toán năm học 2020 – 2021. Đề KSCL Toán thi tốt nghiệp THPT 2021 lần 3 trường chuyên Lam Sơn – Thanh Hóa mã đề 312 gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL Toán thi tốt nghiệp THPT 2021 lần 3 trường chuyên Lam Sơn – Thanh Hóa : + Trong không gian Oxyz, cho mặt cầu S 2 2 2 x y z 36 0 và mặt phẳng P 2 2 36 0 x y z và điểm N 3 3 3. Từ một điểm M thay đổi trên P kẻ các tiếp tuyến phân biệt MA; MB; MC đến S (A B C là các tiếp điểm). Khi khoảng cách từ N đến mặt phẳng ABC lớn nhất thì phương trình mặt phẳng ABC là ax y bz c 2 0. Giá trị a b c bằng? + Trong không gian Oxyz, cho hai điểm A 2 3 1, B 1 2 4 và ba phương trình sau 2 1 2 3 1 3 2 1 1 5 1 5 4 5 x t x t x y z y t y t z t z t. A. Cả I II và III đều là phương trình của đường thẳng AB. B. Chỉ có I và III là phương trình của đường thẳng. C. Chỉ có I là phương trình của đường thẳng AB. D. Chỉ có III là phương trình của đường thẳng AB. + Một chiếc máy bay vào vị trí cất cánh chuyển động trên đường băng với vận tốc 2 v t t t 2 m/s với t là thời gian được tính theo đơn vị giây kể từ khi máy bay bắt đầu chuyển động. Biết máy bay đạt vận tốc 120 m/s thì nó rời đường băng. Quãng đường máy bay đã di chuyển trên đường băng gần nhất với giá trị nào dưới đây?
Đề KSCL Toán 12 năm 2020 - 2021 trường chuyên Lê Hồng Phong - Nam Định
Sáng thứ Hai ngày 03 tháng 05 năm 2021, trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng lớp 12 môn Toán năm học 2020 – 2021. Đề KSCL Toán 12 năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định mã đề 752 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề KSCL Toán 12 năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Có bao nhiêu số phức z với phần thực là số nguyên thỏa mãn là số ảo? + Xét điểm M có hoành độ là số nguyên thuộc đồ thị (C). Tiếp tuyến của đồ thị (C) tại điểm M cắt đường tiệm cận ngang của (C) tại điểm A. Hỏi có bao nhiêu điểm M thỏa mãn điều kiện A cách gốc tọa độ một khoảng cách nhỏ hơn 2 10. + Xét hình chóp S.ABC có đáy là tam giác đều cạnh bằng 2, SA vuông góc với mặt phẳng chứa đáy. Gọi M là trung điểm của AB và p là góc giữa đường thẳng SM và mặt phẳng (SBC). Biết rằng sin p, tìm giá trị lớn nhất của thể tích khối chóp S.ABC.
Đề KSCL Toán 12 lần 2 năm 2020 - 2021 trường Quảng Xương 2 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 2 năm học 2020 – 2021 trường THPT Quảng Xương 2, tỉnh Thanh Hóa. Trích dẫn đề KSCL Toán 12 lần 2 năm 2020 – 2021 trường Quảng Xương 2 – Thanh Hóa : + Một xí nghiệp chế biến sữa bò muốn sản xuất lon đựng sữa có dạng hình trụ bằng thiếc có thể tích không đổi. Để giảm giá một lon sữa khi bán ra thị trường người ta cần chế tạo lon sữa có kích thước sao cho ít tốn kém vật liệu. Để thỏa mãn yêu cầu đặt ra (diện tích toàn phần bé nhất), người ta phải thiết kế lon sữa thỏa mãn điều kiện nào trong các điều kiện sau: A. Chiều cao bằng 3 lần bán kính của đáy. B. Chiều cao bằng bình phương bán kính của đáy. C. Chiều cao bằng đường kính của đáy. D. Chiều cao bằng bán kính của đáy. + Cho hàm số f(x) liên tục trên R và đồ thị hàm số y f x cắt trục hoành tại các điểm có hoành độ lần lượt là a, b, 0, c (a < b < c) (như hình bên dưới). Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số 2 g x f x m trên a c bằng 2021. Tổng tất cả các phần tử của S bằng? + Cho hàm số bậc bốn y f x có đồ thị là đường cong (như hình vẽ bên dưới). Biết hàm số đạt cực trị tại ba điểm 1 2 3 x x x theo thứ tự lập thành một cấp số cộng có công sai là 2. Gọi 1 S là diện tích phần gạch chéo, 2 S là diện tích phần tô đậm. Tỉ số 1 2 S S bằng?