Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 11 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 2

Nội dung Đề KSCL lớp 11 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 2 Bản PDF Với mục đích tạo điều kiện để các em học sinh khối 11 được rèn luyện và làm quen sớm với kỳ thi THPT Quốc gia môn Toán, trường THPT chuyên Vĩnh Phúc đã tiến hành tổ chức kỳ thi KSCL Toán lớp 11 ôn thi THPTQG năm 2018 – 2019 lần 2, đề thi có mã 895 gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu học sinh làm bài trong 90 phút, các câu hỏi nằm trong phần kiến thức Toán lớp 10 và Toán lớp 11 đã được học, đề thi có đáp án đầy đủ các mã đề. Trích dẫn đề KSCL Toán lớp 11 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 2 : + Phát biểu nào sau đây là sai: A. Luôn tồn tại hai đường thẳng song song với nhau và cả hai đường thẳng này cùng cắt hai đường thẳng chéo nhau. B. Hai đường thẳng gọi là chéo nhau nếu chúng không đồng phẳng. C. Hai đường thẳng gọi là song song nếu chúng đồng phẳng và không có điểm chung. D. Hai đường thẳng gọi là đồng phẳng nếu chúng cùng nằm trong một mặt phẳng. [ads] + Phát biểu nào sau đây là sai: A. Hai hình vuông có cùng diện tích thì bằng nhau. B. Hai hình tròn có cùng chu vi thì bằng nhau. C. Hai tứ giác lồi có các cặp cạnh tương ứng bằng nhau và một cặp đường chéo tương ứng bằng nhau thì bằng nhau. D. Hai hình chữ nhật có cùng chu vi thì bằng nhau. + Trong trận chung kết bóng đá phải phân định thắng thua bằng đá luân lưu 11 mét. Huấn luyện viên của mỗi đội cần trình với trọng tài một danh sách sắp xếp thứ tự 5 cầu thủ trong số 11 cầu thủ để đá luân lưu 5 quả 11 mét. Số cách lập danh sách 5 cầu thủ đá 11 mét là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề KSCL lớp 11 môn Toán lần 3 năm 2022 2023 trường THPT Tiên Du 1 Bắc Ninh
Nội dung Đề KSCL lớp 11 môn Toán lần 3 năm 2022 2023 trường THPT Tiên Du 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán lớp 11 lần 3 năm học 2022 – 2023 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề thi mã đề 101 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày 01 tháng 04 năm 2023. Trích dẫn Đề KSCL Toán lớp 11 lần 3 năm 2022 – 2023 trường THPT Tiên Du 1 – Bắc Ninh : + Một hộp chứa 15 quả cầu gồm 6 quả cầu đỏ được đánh số từ 1 đến 6 và 9 quả cầu xanh được đánh số từ 1 đến 9. Lấy ngẫu nhiên ba quả trong hộp đó, xác suất để lấy được ba quả cầu đủ hai màu xanh và đỏ đồng thời tích ba số ghi trên 3 quả cầu là số lẻ bằng? + Cho hình chóp S ABCD có SA vuông góc với đáy, đáy là hình vuông cạnh a. Gọi M, N lần lượt là hình chiếu vuông góc của A lên cạnh SB SD. Biết góc giữa đường thẳng SB và mặt phẳng AMN bằng 0 60. Côsin của góc giữa hai đường thẳng AM và BD bằng? + Gọi S là tập hợp tất cả các số tự nhiên có năm chữ số. Chọn ngẫu nhiên một số trong S. Xác suất chọn được một số trong S có chữ số hàng trăm bằng trung bình cộng của hai chữ số hàng đơn vị và chữ số hàng chục nghìn là?
Đề KSCL lớp 11 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa
Nội dung Đề KSCL lớp 11 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng môn Toán lớp 11 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán lớp 11 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Cho hình chóp S.ABCD có BC AD BC AD AB b 2 1. Tam giác SAD đều. Mặt phẳng (P) đi qua điểm M trên cạnh AB và song song với các đường thẳng SA và BC, đồng thời cắt CD, SC, SB theo thứ tự tại N, P, Q. Đặt AM x x b 0. Gọi S x là diện tích của tứ giác MNPQ. Khi đó S x lớn nhất bằng? + Cho tứ diện ABCD có M, N lần lượt là trung điểm của BC và CD. Gọi K là điểm tùy ý thuộc miền trong tam giác ABD. Giao tuyến của (KMN) và (ABD) có tính chất là: A. nằm trong mặt phẳng (ACD) B. Song song với BD C. Cắt cạnh BD D. Cắt cạnh AC. + Cho hàm số 2 y f x ax bx c a 0 có đồ thị như hình vẽ bên. Hỏi phương trình 2 a f cosx b f cosx c có bao nhiêu nghiệm trong khoảng 7 2 2 π π? File WORD (dành cho quý thầy, cô):
Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường THPT Yên Lạc 2 Vĩnh Phúc
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường THPT Yên Lạc 2 Vĩnh Phúc Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề thi bao gồm các chủ đề: lượng giác, cấp số cộng và cấp số nhân, nhị thức Newton, xác suất, giới hạn, hình học tọa độ trong mặt phẳng Oxy, vectơ, hình học không gian, min – max, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 : + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác trên. + Cho hình đa giác đều H có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình H. Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật không phải là hình vuông? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho vtSM = 1/3.vtSB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD. File WORD (dành cho quý thầy, cô):
Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường Minh Châu Hưng Yên
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường Minh Châu Hưng Yên Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 trường Minh Châu – Hưng Yên gồm 1 trang với 9 bài toán tự luận, thí sinh làm bài trong 120 phút, không kể thời gian phát đề, đề thi có lời giải chi tiết . Các dạng toán trong đề KSCL đội tuyển HSG Toán lớp 11 : + Giải phương trình lượng giác + Hàm số và các bài toán liên quan + Tính giới hạn + Nhị thức Newton + Giải hệ phương trình vô tỉ + Phương pháp tọa độ trong mặt phẳng Oxy + Hình học không gian + Tìm công thức số hạng tổng quát của dãy số