Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 12 môn Toán lần 2 năm 2020 2021 trường Nguyễn Đức Cảnh Thái Bình

Nội dung Đề khảo sát lớp 12 môn Toán lần 2 năm 2020 2021 trường Nguyễn Đức Cảnh Thái Bình Bản PDF Chủ Nhật ngày 28 tháng 03 năm 2021, trường THPT Nguyễn Đức Cảnh, tỉnh Thái Bình tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ hai. Đề khảo sát Toán lớp 12 lần 2 năm 2020 – 2021 trường Nguyễn Đức Cảnh – Thái Bình gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án (đáp án được gạch chân). Trích dẫn đề khảo sát Toán lớp 12 lần 2 năm 2020 – 2021 trường Nguyễn Đức Cảnh – Thái Bình : + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, M là trung điểm BC, hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với trung điểm của AM. Cho biết AB = a, AC = a3 và mặt phẳng (SAB) tạo với mặt phẳng (ABC) một góc 60 độ. Tính khoảng cách giữa hai đường thẳng SA và BC. + Gọi là tập hợp các số tự nhiên gồm chữ số đôi một khác nhau được thành lập từ các chữ số. Chọn ngẫu nhiên một số từ tập. Xác suất để số được chọn không có hai chữ số chẵn đứng cạnh nhau bằng? + Cho hình trụ có thiết diện qua trục là hình vuông cạnh 2a. Mặt phẳng (P) song song với trục và cách trục một khoảng a/2. Tính diện tích thiết diện của hình trụ cắt bởi mặt phẳng (P).

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán lần 2 năm 2019 - 2020 trường THPT chuyên Phan Bội Châu - Nghệ An
Nhằm giúp học sinh khối 12 của nhà trường ôn tập, rèn luyện để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, ngày … tháng 05 năm 2020, trường THPT chuyên Phan Bội Châu, tỉnh Nghệ An tổ chức kỳ thi khảo sát chất lượng môn Toán 12 lần thứ hai năm học 2019 – 2020. Đề KSCL Toán lần 2 năm 2019 – 2020 trường THPT chuyên Phan Bội Châu – Nghệ An có mã đề 132, đề thi gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán lần 2 năm 2019 – 2020 trường THPT chuyên Phan Bội Châu – Nghệ An : + Cho một tấm nhôm hình vuông cạnh 12 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gập tấm nhôm lại để được một cái hộp không nắp( tham khảo hình vẽ bên). Tìm x để hộp nhận được có thể tích lớn nhất (giả thiết bề dày tấm tôn không đáng kể). + Cho hàm số f(x) = (x – 1).(x – 2) … (x – 2020).  Có bao nhiêu giá trị nguyên của m thuộc đoạn [–2020;2020] để phương trình f'(x) = mf(x) có 2020 nghiệm phân biệt? [ads] + Cho hình chóp S.ABC có thể tích bằng 1. Mặt phẳng (Q) thay đổi song song với mặt phẳng (ABC) lần lượt cắt các cạnh SA, SB, SC tại M, N, P. Qua M, N, P kẻ các đường thẳng song song với nhau lần lượt cắt mặt phẳng (ABC) tại M’, N’, P’. Tính giá trị lớn nhất của thể tích khối lăng trụ MNP.M’N’P. + Cho hình chóp S.ABC có SA vuông góc với đáy, đáy là tam giác đều, SA = a√3 và góc giữa đường thẳng SB và đáy bằng 60 độ. Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu đi qua các điểm A, B, H, K. + Cho hình thang ABCD vuông tại A và D, AD = CD = a, AB = 2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là?
Đề KSCL thi THPT Quốc gia 2020 môn Toán lần 2 trường THPT chuyên Vĩnh Phúc
Chủ Nhật ngày 24 tháng 05 năm 2020, trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 12 lần thứ hai ôn thi THPT Quốc gia năm học 2019 – 2020. Đề KSCL thi THPT Quốc gia 2020 môn Toán lần 2 trường THPT chuyên Vĩnh Phúc mã đề 312 gồm 05 trang với 50 câu trắc nghiệm, học sinh làm bài trong 90 phút, đề thi có đáp án. Trích dẫn đề KSCL thi THPT Quốc gia 2020 môn Toán lần 2 trường THPT chuyên Vĩnh Phúc : + Cho phương trình m.ln(x + 1) – x – 2 = 0. Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình đã cho có hai nghiệm x1 và x2 thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a;+∞). Khi đó a thuộc khoảng nào dưới đây? + Cho hình vuông ABCD cạnh a, trên đường thẳng vuông góc với mặt phẳng (ABCD) tại A ta lấy điểm S di động không trùng với A. Hình chiếu vuông góc của A lên SB và SD lần lượt là H và K. Tìm giá trị lớn nhất của thể tích khối tứ diện ACHK. + Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Biết f(-1) = 1 và f(-1/e) = 2. Tìm tất cả các giá trị của m để bất phương trình f(x) < ln(-x) + m nghiệm đúng với mọi x thuộc (-1;-1/e).
Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành - Thanh Hóa
Ngày … tháng 05 năm 2020, trường THPT Tô Hiến Thành, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng tốt nghiệp THPT môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa có mã đề 121, đề được biên soạn bám sát cấu trúc đề minh họa THPT 2020 môn Toán lần 2 của Bộ Giáo dục và Đào tạo, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL tốt nghiệp THPT 2020 lần 1 Toán 12 trường THPT Tô Hiến Thành – Thanh Hóa : + Trên một chiếc đài Radio FM có vạch chia để người dùng có thể dò sóng cần tìm. Vạch ngoài cùng bên trái và vạch ngoài cùng bên phải tương ứng với 88Mhz và 108Mhz. Hai vạch này cách nhau 10cm. Biết vị trí của vạch cách vạch ngoài cùng bên trái d (cm) thì có tần số bằng k.a^d Mhz với k và a là hai hằng số. Tìm vị trí tốt nhất của vạch để bắt sóng VOV1 với tần số 102,7 Mhz. A. Cách vạch ngoài cùng bên phải 1,98cm. B. Cách vạch ngoài cùng bên phải 2,46cm. C. Cách vạch ngoài cùng bên trái 7,35cm. D. Cách vạch ngoài cùng bên trái 8,23cm. [ads] + Cho hệ phương trình log3 (x + y) = m và log2 (x^2 + y^2) = 2m, trong đó m là tham số thực. Hỏi có bao nhiêu giá trị của m để hệ phương trình đã cho có đúng hai nghiệm nguyên? + Cho đồ thị hai hàm số f(x) = (2x + 1)/(x + 1) và g(x) = (ax + 1)/(x + 2) với a ≠ 1/2. Tìm các giá trị thực dương của a để các tiệm cận của hai đồ thị hàm số tạo thành một hình chữ nhật có diện tích là 4.
Đề KSCL Toán 12 lần 2 năm 2019 - 2020 trường chuyên Quang Trung - Bình Phước
Nằm trong kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia 2020 môn Toán, ngày … tháng … năm 2020, trường THPT chuyên Quang Trung, tỉnh Bình Phước tổ chức kỳ thi khảo sát chất lượng môn Toán 12 năm học 2019 – 2020 lần thứ hai. Đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước có mã đề 003, đề gồm 08 trang với 50 câu trắc nghiệm, học sinh làm bài trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL Toán 12 lần 2 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước : + Xét các số nguyên dương a, b sao cho phương trình a(lnx)^2 + blnx + 5 = 0 có hai nghiệm phân biệt x1, x2 và phương trình 5(logx)^2 + blogx + a = 0 có hai nghiệm phân biệt x3, x4 sao cho x1x2 > x3x4. Tìm giá trị nhỏ nhất của S = 2a + 3b. + Cho hàm số y = f(x) có đạo hàm liên tục trên và có đồ thị y = f(x) như hình vẽ. Đặt g(x) = f(x – m) – 1/2.(x – m – 1)^2 + 2019 với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = g(x) đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng? [ads] + Cho hình chóp S.ABCD đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), SA = a. M và K tương ứng là trọng tâm tam giác SAB và SCD; N là trung điểm BC. Thể tích khối tứ diện SMNK bằng m/n.a^3 với m, n thuộc N và (m;n) = 1. Giá trị m + n bằng? + Cho hàm số y = f(x) xác định trên R\{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ. Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = 2m – 4 có đúng 3 nghiệm thực phân biệt. + Hình đa diện nào dưới đây không có tâm đối xứng: Tứ diện đều; Hình lập phương; Hình bát diện đều; Hình trụ. A.Tứ diện đều. B. Lập phương. C. Bát diện đều. D. Hình trụ.