Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 trường THCS Đống Đa TP HCM

Nội dung Đề kiểm tra cuối học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 trường THCS Đống Đa TP HCM Bản PDF - Nội dung bài viết Đề kiểm tra cuối học kỳ 2 môn Toán lớp 9 năm học 2021 – 2022 trường THCS Đống Đa TP HCM Đề kiểm tra cuối học kỳ 2 môn Toán lớp 9 năm học 2021 – 2022 trường THCS Đống Đa TP HCM Chào đón quý thầy, cô giáo và các em học sinh lớp 9! Dưới đây là bài kiểm tra cuối học kỳ 2 môn Toán năm học 2021 – 2022 tại trường THCS Đống Đa, quận Bình Thạnh, thành phố Hồ Chí Minh. Trích dẫn các câu hỏi trong đề kiểm tra: + Giải bài toán bằng cách lập hệ phương trình: Trong kỳ thi học kì II môn Toán lớp 9, một phòng thi của trường có 24 thí sinh dự thi. Cuối buổi thi, sau khi thu bài, giám thị đếm được tổng số tờ là 59 tờ giấy thi. Hỏi trong phòng thi có bao nhiêu thí sinh làm bài 2 tờ giấy thi, bao nhiêu thí sinh làm bài 3 tờ giấy thi? Biết rằng có 3 thí sinh chỉ làm 1 tờ giấy thi. + Công ty A thực hiện cuộc khảo sát về mối liên hệ giữa số lượng sản phẩm bán ra và giá của mỗi sản phẩm. Biết rằng khi giá bán là 500,000 đồng thì số lượng sản phẩm bán ra là 1300, và khi giá bán là 540,000 đồng thì số lượng sản phẩm bán ra là 1600. Hãy xác định hệ số a và b trong mối quan hệ y = ax + b, và tính số lượng sản phẩm bán ra với giá bán là 480,000 đồng mỗi sản phẩm. + Người ta thả một quả trứng vào cốc thủy tinh hình trụ có đường kính đáy 10cm và nước trong cốc dâng thêm 7,5 mm. Hãy tính thể tích của quả trứng, biết rằng trứng chìm hoàn toàn vào nước. (Sử dụng công thức tính thể tích hình trụ: V = pi*r^2*h, với r là bán kính đáy và h là chiều cao của hình trụ) Hy vọng các em sẽ làm bài tốt và đạt kết quả cao trong kỳ thi này. Chúc quý thầy cô giáo và các em học sinh lớp 9 thành công!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra cuối học kỳ 2 Toán 9 năm 2021 - 2022 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Tư ngày 27 tháng 04 năm 2022. Trích dẫn đề kiểm tra cuối học kỳ 2 Toán 9 năm 2021 – 2022 sở GD&ĐT Bình Dương : + Cho phương trình x2 – 2x – 8 = 0 (x là ẩn số) a) Chứng tỏ rằng phương trình trên có hai nghiệm phân biệt x1 và x2. b) Không giải phương trình, hãy tính giá trị của biểu thức: A. + Cho hàm số y = x2 có đồ thị là (P) và đường thẳng (D): y = x + 2. a) Vẽ (P) và (D) trên cùng một hệ trục tọa độ Oxy. b) Tìm tọa độ giao điểm của (P) và (D) bằng phép tính. + Người ta muốn lát gạch một nền nhà hình chữ nhật có chu vi 32m. Biết chiều rộng bằng 2/3 chiều dài. Gạch dùng để lát nền là loại gạch hình vuông có cạnh bằng 0,8m. Tính số gạch cần dùng.
Đề cuối học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 20 tháng 04 năm 2022. Trích dẫn đề cuối học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Tìm một số tự nhiên có hai chữ số biết rằng: Tổng hai chữ số của số đó bằng 9, nếu đổi chỗ hai chữ số cho nhau thì ta đuợc một số mới (có hai chữ số) bé hơn số ban đầu 27 đơn vị. + Cho phương trình bậc hai x2 – 2x + 2m – 3 = 0 (x là ẩn). Xác định các giá trị của m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn điều kiện 1/x12 + 1/x22 = 10/9. + Cho tam giác ABC có ba góc nhọn(AB < AC) nội tiếp đường tròn (O;R). Vẽ các đường cao AI, BK của tam giác ABC (I thuộc BC, K thuộc AC). Gọi H là giao điểm của AI và BK và M là trung điểm của BC, kẻ HE vuông góc với AM tại E. 1) Chứng minh rằng bốn điểm A, H, E, K cùng thuộc một đường tròn. 2) Chứng minh: IB.IC = IH.IA. 3) Chứng minh: AEK = ACM và ME.MA < R2.
Đề học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Hai Bà Trưng, thành phố Hà Nội. Trích dẫn đề học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ Hà Nội đến Hải Phòng dài 120 km. Một ô tô và một xe máy xuất phát cùng một lúc từ Hà Nội để đi đến Hải Phòng. Vận tốc của ô tô lớn hơn vận tốc xe máy 20 km/giờ nên ô tô đến nơi sớm hơn xe máy 1 giờ. Tính vận tốc mỗi xe, biết vận tốc mỗi xe không thay đổi trên cả quãng đường. + Hộp sữa đặc có đường là một hình trụ có đường kính đáy bằng 7cm, chiều cao 8cm. Hỏi bên trong hộp chứa được bao nhiêu mi-li-lít sữa? (bỏ qua độ dày của vỏ hộp, lấy pi = 3,14). + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x2 và đường thẳng (d): y = mx + 3. a) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P) với m = 2. b) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt. Gọi hai giao điểm lần lượt là A(x1;y1) và B(x2;y2). Tìm m để y1 + y2 = 4(x1 + x2) + 3.
Đề khảo sát chất lượng học kỳ 2 Toán 9 năm 2021 - 2022 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học kỳ 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (02 điểm) và 05 câu tự luận (08 điểm), thời gian học sinh làm bài thi là 120 phút; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát chất lượng học kỳ 2 Toán 9 năm 2021 – 2022 sở GD&ĐT Nam Định : + Cho hai đường tròn O cm 6 và O cm 5 sao cho OO cm 9. Khi đó hai đường tròn A. cắt nhau. B. không có điểm chung. C. tiếp xúc ngoài nhau. D. tiếp xúc trong nhau. + Cho hình vuông ABCD có độ dài cạnh bằng 6cm. Vẽ đường tròn (O) đường kính AD và đường tròn (I) sao cho (I) tiếp xúc với (O) tại E và tiếp xúc với đường thẳng BC tại H (hình vẽ bên). Tính diện tích phần được tô đậm trong hình vẽ (kết quả làm tròn đến chữ thập phân thứ nhất). + Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC (B và C là các tiếp điểm). Kẻ đường kính CD của đường tròn (O), đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M. Gọi H là giao điểm của AO và BC. a) Chứng minh 0 AHC 90 và tứ giác AMHC nội tiếp đường tròn. b) Gọi N là giao điểm của BM và AO. Chứng minh rằng N là trung điểm của đoạn thẳng AH.