Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề thi chất lượng giữa học kỳ 2 Toán 8

THCS. giới thiệu đến bạn đọc tài liệu tuyển tập 10 đề thi chất lượng giữa học kỳ 2 Toán 8, bộ đề được biên soạn bởi thầy Lương Tuấn Đức nhằm giúp các em học sinh lớp 8 tự ôn tập để chuẩn bị cho kỳ kiểm tra định kỳ môn Toán 8 giai đoạn giữa học kỳ 2 của năm học. Các đề thi chất lượng giữa học kỳ 2 Toán 8 trong tài liệu được biên soạn theo hình thức trắc nghiệm kết hợp tự luận với 5 câu hỏi và bài toán ở mỗi đề thi, đây là dạng đề được nhiều trường Trung học Cơ sở và Phòng Giáo dục & Đào tạo áp dụng, học sinh làm bài trong 90 phút. Trích dẫn tài liệu 10 đề thi chất lượng giữa học kỳ 2 Toán 8 : + Chọn một chữ cái trước câu trả lời đúng và đầy đủ nhất: x = 3 là nghiệm chung của hai phương trình nào sau đây? A. (x – 5)(x – 1) = 0 và x^2 = 9. B. 2x – 1 = 5 và 3x – 7 = 10. C. x(x – 5) = 0 và (2x – 6)(x – 8) = 0. D. x(2x – 1) = 15 và (x + 1)x = 12. [ads] + Cho tam giác AOB có AB = 18cm, OA = 12cm, OB = 9cm. Trên tia đối tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO tại C. Gọi F là giao điểm của AD và BC. 1. Tính độ dài OC, CD. 2. Chứng minh FD.BC = FC.AD. 3. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M, N sao cho M và N. Chứng minh OM = ON. + Một xí nghiệp dự định sản xuất 1500 sản phẩm trong 30 ngày. Nhưng nhờ tổ chức lao động hợp lí nên thực tế đã sản xuất mỗi ngày vượt 15 sản phẩm. Do đó xí nghiệp đã sản xuất không những vượt mức dự định 255 sản phẩm mà còn hoàn thành trước thời hạn. Hỏi thực tế xí nghiệp đã rút ngắn được bao nhiêu ngày?

Nguồn: toanmath.com

Đọc Sách

Đề giữa học kì 2 Toán 8 năm 2022 - 2023 trường THCS Chương Dương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Chương Dương, quận Hoàn Kiếm, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài: 80 phút; ngày kiểm tra: 08/03/2023. Trích dẫn Đề giữa học kì 2 Toán 8 năm 2022 – 2023 trường THCS Chương Dương – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một người đi ô tô từ A đến B với vận tốc 60km/h. Sau khi đến B và nghỉ lại ở đó 30 phút, ô tô lại đi từ B về A với vận tốc 40km/h. Tổng thời gian cả đi lẫn về là 8h 15 phút (bao gồm cả thời gian nghỉ). Tính độ dài quãng đường AB. + Cho hình vẽ bên: Biết DE // BC, AG là tia phân giác của DAE và AD = 6cm, DB = 3cm, DE = 8cm, AE = 10cm. a) Tính độ dài đoạn BC. b) Tính độ dài đoạn GE. (Lưu ý: học sinh không phải vẽ lại hình vào giấy kiểm tra). + Cho tam giác ABC vuông tại A (AB > AC). Gọi I là trung điểm của AB. Kẻ IN vuông góc với BC tại N (N thuộc BC). 1) Chứng minh : ∆ACB đồng dạng với ∆NIB. Từ đó suy ra BA.BI = BC.BN 2) Giả sử AC = 6cm; BC = 10cm. Tính BN. 3) Chứng minh IAN = ICN 4) Chứng minh : AC2 = NC2 − NB2.
Đề giữa kì 2 Toán 8 năm 2022 - 2023 trường Thực Nghiệm KHGD - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra giữa học kì 2 môn Toán 8 năm học 2022 – 2023 trường TH – THCS – THPT Thực Nghiệm Khoa Học Giáo Dục, thành phố Hà Nội. Trích dẫn Đề giữa kì 2 Toán 8 năm 2022 – 2023 trường Thực Nghiệm KHGD – Hà Nội : + Cho biểu thức P. a) Rút gọn biểu thức P. b) Tính giá trị của biểu thức Q khi x = 4. c) Tìm giá trị của x để A = 4/5 với A = P:Q. + Giải bài toán bằng cách lập phương trình: Một xưởng may chuẩn bị một đơn hàng cho sự kiện tháng 3 Chào mừng ngày Quốc tế Phụ nữ. Xưởng dự định mỗi ngày may 30 áo dài. Trong thực tế mỗi ngày xưởng đã may được 40 áo dài nên đã hoàn thành kế hoạch sớm hơn 3 ngày và may thêm được 20 áo. Hỏi theo kế hoạch xưởng phải may được bao nhiêu chiếc áo dài? + Cho tam giác MNP vuông tại N, biết NM = 21cm, NP = 28cm, phân giác NO (O thuộc MP) a) Tính độ dài MP, MO, OP. b) Gọi D là hình chiếu của O trên NP. Hãy tính độ dài OD, DP. c) Gọi I là giao điểm các đường phân giác và G là trọng tâm của tam giác MNP. Chứng minh rằng IG // NP.
Đề giữa học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Tứ Liên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Tứ Liên, quận Tây Hồ, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 2 Toán 8 năm 2022 – 2023 trường THCS Tứ Liên – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một người đi xe đạp từ A đến B với vận tốc trung bình là 15 km/h. Lúc về người đó đi với vận tốc trung bình là 12 km/h, nên thời gian về nhiều hơn thời gian đi là 22 phút. Tính độ dài quãng đường từ A đến B? + Nhà bạn An có miếng đất như hình vẽ bên, gồm hình vuông ABCD và hình chữ nhật EHKF có diện tích bằng nhau. Biết chiều rộng hình chữ nhật EHKF là HK = 5m và chiều dài EH gấp 4 lần chiều rộng HK. a/ Tính diện tích miếng đất của nhà bạn An. b/ Ba bạn An muốn rào xung quanh khu đất trên bằng dây kẽm gai có giá 8000 đồng / 1 mét. Tính số tiền mà ba bạn An phải trả khi mua dây kẽm gai? + Cho tam giác ABC. Điểm M thuộc cạnh BC sao cho MB/MC = 2/3. Kẻ MH // AC (H thuộc AB) và MK // AB (K thuộc AC). a) Tính độ dài MB và MC biết BC = 25 cm. b) Tính chu vi tam giác ABC khi biết chu vi tam giác KMC bằng 30 cm. c) Chứng minh HB.MC = BM.KM.
Đề giữa học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Quảng An - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra định kì giữa học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Quảng An, quận Tây Hồ, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 2 Toán 8 năm 2022 – 2023 trường THCS Quảng An – Hà Nội : + Một người đi ô tô từ A đến B với vận tốc 50 km/h. Khi đến B người đó nghỉ 30 phút rồi quay trở về A với vận tốc 60 km/h. Tính quãng đường AB biết thời gian cả đi và về và nghỉ là 4 giờ 10 phút? + Vào một thời điểm trời nắng, bóng của một bạn học sinh cao 1,5m trên sân trường dài 1m và bóng cái cây trên sân trường dài 12m. Tính chiều cao cái cây? + Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm, AK là tia phân giác của BAC (K thuộc BC). a) Tính tỉ số KB/KC và độ dài các đoạn thẳng BC, KB, KC? b) Từ K kẻ KE vuông góc với AC tại E (E thuộc AC). Tính độ dài KE, AE và diện tích tứ giác AEKB? c) Gọi O là giao điểm của AK và BE. Qua O kẻ đường thẳng song song với AB, cắt BC và AC lần lượt tại M và N. Chứng minh rằng OM = ON.