Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Nam Định

Nội dung Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Nam Định Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021-2022 của sở GD&ĐT Nam Định. Đề thi này bao gồm đáp án và lời giải chi tiết cho từng câu hỏi.

Đề thi tuyển sinh lớp 10 môn Toán năm 2021-2022 của sở GD&ĐT Nam Định có các nội dung sau:

1. Mảnh đất hình chữ nhật ABCD có chiều dài AB là 6m, chiều rộng BC là 4m. Người ta trồng hoa trên phần đất là nửa hình tròn có đường kính AD và nửa đường tròn có đường kính BC, phần còn lại để trồng cỏ. Yêu cầu tính diện tích phần đất trồng cỏ (phần được tô đậm trong hình vẽ, làm tròn đến chữ số thập phân thứ nhất).

2. Cho O và điểm A nằm bên ngoài đường tròn. Từ A, kẻ các tiếp tuyến AB và AC với đường tròn O (B, C là các tiếp điểm). Kẻ đường kính BD của đường tròn O.
a) Chứng minh ABOC là tứ giác nội tiếp đường tròn và BDC AOC.
b) Kẻ CK vuông góc với BD tại K. Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK.

3. Tìm tọa độ của tất cả các điểm thuộc parabol y = x^2 có tung độ bằng -8.

Đề thi được lưu trữ trong file Word để quý thầy cô thuận tiện trong việc tham khảo và sử dụng. Hy vọng rằng đề thi sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh - TP. HCM
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh – TP. HCM gồm 6 bài tập tự luận, đề thi có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O; R) và điểm M nằm ngoài (O). Vẽ 2 tiếp tuyến MA, MB và cát tuyến MCD của (O) (A, B là tiếp điểm, C nằm giữa M và D; A và C nằm khác phía đối với đường thẳng MO). Gọi I là trung điểm CD. [ads] a) Chứng minh: MB^2 = MC.MD b) Chứng minh tứ giác AOIB nội tiếp c) Tia BI cắt (O) tại J. Chứng minh: AD^2 = AJ.MD d) Đường thẳng qua I song song với DB cắt AB tại K, tia CK cắt OB tại G. Tính bán kính đường tròn ngoại tiếp ∆CIG theo R + Hàng tháng một người gửi vào ngân hàng 5.000.000đ với lãi suất 0,6%/tháng. Hỏi sau 15 tháng người đó nhận được số tiền cả gốc lẫn lãi là bao nhiêu? Biết rằng hàng tháng người đó không rút lãi ra.
Tuyển chọn các đề thi tuyển sinh vào lớp 10 môn Toán - Nguyễn Hoàng Nam
+ Được tuyển chọn từ tổng hợp các đề thi hay nhất của các tỉnh thành phố năm học 2013 – 2014. + Có bổ sung một số câu hỏi trọng tâm thường ra thi. + Các bài hình học khó đều có hình vẽ sẵn, được ký hiệu và ghi sơ đồ để hướng dẫn học sinh suy nghĩ.
Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo – Vĩnh Phúc lần 1 gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Hai vòi nước cùng chảy vào một cái bể không có nước thì trong 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được 2/3 bể nước. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể. [ads] + Cho đường tròn (O), M là một điểm nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn, chỉ rõ bán kính của đường tròn đó. b) PR = RS.