Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển dự kỳ thi HSG Quốc gia lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Phú Thọ

Nội dung Đề thi chọn đội tuyển dự kỳ thi HSG Quốc gia lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Phú Thọ Bản PDF Đề thi chọn đội tuyển dự kỳ thi HSG Quốc gia Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Phú Thọ gồm 2 đề thi dành cho 2 ngày thi: ngày 14/09/2018 và ngày 15/09/2018, ngày thi thứ nhất gồm 4 bài toán, ngày thi thứ 2 gồm 3 bài toán, mỗi đề học sinh giải trong thời gian 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn đội tuyển dự kỳ thi HSG Quốc gia Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Phú Thọ : + Cho tứ giác nội tiếp ABCD có hai đường chéo cắt nhau tại P. Đường tròn ngoại tiếp các tam giác APB, CPD cắt cạnh BC theo thứ tự tại E, F. Gọi I, J lần lượt là tâm đường tròn nội tiếp các tam giác ABE, CDF, hai đoạn thẳng BJ và CI cắt nhau tại Q. Đường tròn ngoại tiếp tam giác AIB cắt đoạn thẳng BD tại M. Đường tròn ngoại tiếp tam giác DJC cắt đoạn thẳng AC tại N. Chứng minh BIJC là tứ giác nội tiếp. Chứng minh ba đường thẳng IM, JN, PQ đồng quy. [ads] + Chứng minh rằng: Tồn tại 2018 số nguyên dương liên tiếp là hợp số. Tồn tại 2018 số nguyên dương liên tiếp chứa đúng 2 số nguyên tố. + Một bảng ô vuông ABCD kích thước 2018 x 2018 gồm 2018^2 ô vuông đơn vị, mỗi ô vuông đơn vị được điền bởi một trong ba số -1, 0,1. Một cách điền số được gọi là đối xứng nếu mỗi ô có tâm trên đường chéo AC được điền số -1 và mỗi cặp ô đối xứng qua AC được điền cùng một số 0 hoặc 1. Chứng minh rằng với một cách điền số đối xứng bất kì, luôn tồn tại hai hàng có các số trong mỗi ô vuông đơn vị lần lượt theo thứ tự từ trái sang phải là a1, a2, …, a2018 ở hàng thứ nhất, b1, b2, …, b2018 ở hàng thứ hai sao cho S = a1b1 + a2b2 + … + a2018b2018 là một số chẵn.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra đội tuyển HSG Toán năm 2021 - 2022 trường chuyên Vị Thanh - Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng đội tuyển học sinh giỏi môn Toán THPT năm học 2021 – 2022 trường THPT chuyên Vị Thanh, tỉnh Hậu Giang; kỳ thi được diễn ra vào ngày 01 tháng 03 năm 2022; đề thi có đáp án và thang điểm. Trích dẫn đề kiểm tra đội tuyển HSG Toán năm 2021 – 2022 trường chuyên Vị Thanh – Hậu Giang : + Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm chia hết cho 10? + Trong mặt phẳng Oxy, biết một cạnh tam giác có trung điểm là M 1 1; hai cạnh kia nằm trên các đường thẳng 2 6 30 x y và x t 2 t y t. Hãy viết phương trình tham số của cạnh thứ ba của tam giác đó? + Cho hình chóp S ABCD có đáy là hình chữ nhật với AD a 3 AB 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SD và mặt phẳng ABCD bằng 0 45. Tính khoảng cách giữa hai đường thẳng SD và BC.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra trong hai ngày 24 và 25 tháng 11 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề chọn học sinh giỏi thành phố Toán 12 năm 2021 - 2022 sở GDĐT Hải Phòng
Thứ Ba ngày 18 tháng 01 năm 2022, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi cấp thành phố lớp 12 môn Toán năm học 2021 – 2022. Đề chọn học sinh giỏi thành phố Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng gồm 01 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn học sinh giỏi thành phố Toán 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Có 15 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định). Chọn ra 4 người trong hàng. Tính xác suất để 4 người được chọn không có hai người nào đứng cạnh nhau. + Cho hình lăng trụ đứng ABCD A B C D có đáy ABCD là hình thang cân, AD song song với BC, AB BC CD a AD a 2. Góc giữa hai mặt phẳng ACD và ABCD bằng 0 45. a) Tính khoảng cách từ B đến mặt phẳng A CD. b) Gọi P là mặt phẳng đi qua B và vuông góc với đường thẳng A C. Mặt phẳng P chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích khối đa diện chứa đỉnh A. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC không có góc nào tù, nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong của góc A D BC. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C biết rằng A có tung độ âm và 1 5 0 1 1 0 2 B I E.
Đề lập đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Bình Phước
Đề lập đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Bình Phước gồm 02 trang với 07 bài toán dạng tự luận, kỳ thi được diễn ra trong hai ngày: 03/01/2022 và 04/01/2022.