Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu học sinh giỏi lớp 7 môn Toán năm 2017 2018 phòng GD ĐT thành phố Thái Nguyên

Nội dung Đề giao lưu học sinh giỏi lớp 7 môn Toán năm 2017 2018 phòng GD ĐT thành phố Thái Nguyên Bản PDF - Nội dung bài viết Đề thi giao lưu học sinh giỏi Toán lớp 7 năm học 2017 - 2018 tại phòng Giáo dục và Đào tạo thành phố Thái Nguyên Đề thi giao lưu học sinh giỏi Toán lớp 7 năm học 2017 - 2018 tại phòng Giáo dục và Đào tạo thành phố Thái Nguyên Đề thi giao lưu học sinh giỏi Toán lớp 7 năm học 2017-2018 do phòng Giáo dục và Đào tạo thành phố Thái Nguyên tổ chức nhằm tạo điều kiện cho học sinh năng động, sáng tạo và giỏi môn Toán có cơ hội thể hiện tài năng của mình. Đề thi sẽ được thi đấu trong không khí lễ hội, vui vẻ và hứa hẹn mang lại những trải nghiệm thú vị cho các thí sinh tham gia. Đây cũng là dịp để các giáo viên, phụ huynh và các em học sinh cùng nhau tận hưởng niềm vui học tập và trau dồi kiến thức. Mục tiêu của đề thi là khuyến khích sự tích cực, cống hiến của học sinh giỏi, giúp họ phát triển toàn diện về kiến thức và kỹ năng, đồng thời tạo ra cơ hội giao lưu, học hỏi và kết nối giữa các em học sinh trong cộng đồng học đường.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm định HSG Toán 7 năm 2022 - 2023 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 16 tháng 03 năm 2023. Trích dẫn Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc BAC tại N và cắt tia AB tại E, cắt tia AC tại F. a. Chứng minh rằng ANE = ANF. b. Chứng minh rằng AE = (AB + AC)/2. + Cho ABC có ABC = 45°, ACB = 120°. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB. Tính ADB. + Cho a, b, c là các số thực thỏa mãn a + b + c ≤ 2. Tìm giá trị nhỏ nhất của biểu thức P = 2023ca – ab – bc.
Đề kiểm định HSG Toán 7 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm định chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An. Trích dẫn Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Tìm giá trị nhỏ nhất của biểu thức A = |2x − 4| + |2x − 6| + |2x − 8|. + Ba hộp đựng trứng gà có tất cả 710 quả. Sau khi bán 1/5 số trứng ở hộp thứ nhất, 1/6 số trứng ở hộp thứ hai và 1/11 số trứng ở hộp thứ ba thì số trứng còn lại ở ba hộp bằng nhau. Hỏi lúc đầu mỗi hộp đựng bao nhiêu quả trứng? + Cho tam giác nhọn ABC có các trung tuyến BD và CE cắt nhau tại G. Trên tia đối của tia DB lấy điểm M sao cho DB = DM. Trên tia đối của tia EC lấy điểm N sao cho EN = EC. Chứng minh rằng: a) ADM = CDB và ba điểm M, A, N thẳng hàng. b) BM + CN > 3BC. c) Các đường thẳng AG, NB, MC đồng quy.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Quảng Ninh - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Ninh, tỉnh Quảng Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Quảng Ninh – Quảng Bình : + Giả sử x, y, z là độ dài 3 cạnh của một tam giác có chu vi bằng 1. Chứng minh. + Cho hai đa thức: M(x) = 2×3 − x2 − 3x + 1 và N(x) = -x3 + x2 – x + 2. Tìm một nghiệm của đa thức P(x) = M(x) + N(x). + Cho tam giác ABC (AB < AC), có ABC = 60°. Hai đường phân giác AD và CE của ABC cắt nhau ở I. a) Chứng minh BC > AC. b) Tính AIC. c) Chứng minh ADE là tam giác cân.
Đề HSG cấp huyện Toán 7 năm 2022 - 2023 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi hình thức tự luận với 09 bài toán, thời gian làm bài 120 phút. Trích dẫn Đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Tìm các số nguyên tố p sao cho 2^p + p^2 là một số nguyên tố. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC, D là điểm thuộc đoạn BM (D khác B và M). Kẻ các đường thẳng BH, CI lần lượt vuông góc với đường thẳng AD tại H và I. Chứng minh rằng: a) BAM = ACM và BH = AI. b) Tam giác MHI vuông cân. + Cho tam giác ABC cân tại A, có A = 100° và I là giao điểm các đường phân giác trong của tam giác ABC. Trên tia BA lấy điểm D sao cho BD = BC. Đường thẳng BI cắt AC tại E, DE cắt BC tại F. Chứng minh rằng: FB = FD.