Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 2024 phòng GD ĐT Lạng Giang Bắc Giang

Nội dung Đề thi thử Toán vào 10 lần 1 năm 2023 2024 phòng GD ĐT Lạng Giang Bắc Giang Bản PDF Đề thi thử Toán vào lớp 10 lần 1 năm 2023-2024 của phòng Giáo dục và Đào tạo huyện Lạng Giang, tỉnh Bắc Giang đã được Sytu giới thiệu đến các thầy cô và học sinh lớp 9. Đề thi bao gồm 30% câu hỏi trắc nghiệm và 70% câu hỏi tự luận, thời gian làm bài là 120 phút. Đề thi có đáp án và lời giải chi tiết, thời gian tổ chức kỳ thi là ngày 22 tháng 03 năm 2023.

Trích dẫn một số câu hỏi trong đề thi:

1. Giá áo sơ mi nữ nhãn hiệu Blue tại siêu thị Big C sau khi giảm giá được tính như sau: Mua áo thứ I giảm 15%, mua áo thứ II giảm thêm 10% so với giá đã giảm của áo thứ I, mua áo thứ III giảm thêm 12% so với giá đã giảm của áo thứ II, giá áo thứ 3 chỉ còn 269,280 đồng. Tính giá niêm yết của áo sơ mi trước khi giảm giá.

2. Trường THCS A có 500 học sinh đạt loại khá và giỏi trong học kì I. Trong học kì II, số học sinh khá tăng 2%, số học sinh giỏi tăng 4% so với học kì I, tổng số học sinh khá và giỏi là 513. Nhà trường phải trả bao nhiêu tiền để mua quyển tập phần thưởng cho học sinh đạt thành tích?

3. Bài toán về đường tròn và các đường kính, vẽ hình và chứng minh các tính chất của các đoạn thẳng và góc trong hình đã cho.

Đề thi năm nay mang đến nhiều bài toán thú vị và phong phú, đồng thời giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và logic toán học. Chúc các em học sinh ôn tập tốt và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (vòng 2) năm 2022 trường THPT chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (vòng 2) năm 2022 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi CLB Toán Lim: Nguyễn Duy Khương – Nguyễn Hoàng Việt – Trịnh Đình Triển – Trương Mạnh Tuấn – TQĐ – Nguyễn Văn Hoàng – Nguyễn Khang). Trích dẫn đề tuyển sinh lớp 10 môn Toán (vòng 2) năm 2022 trường THPT chuyên KHTN – Hà Nội : + Cho các điểm A1, A2, …, A30 theo thứ tự nằm trên một đường thẳng sao cho độ dài các đoạn AkAk+1 bằng k (đơn vị dài), với k = 1, 2, …, 29. Ta tô màu mỗi đoạn thẳng A1A2, …, A29A30 bởi 1 trong 3 màu (mỗi đoạn được tô bởi đúng một màu). Chứng minh rằng với mọi cách tô màu, ta luôn chọn được hai số nguyên dương 1 ≤ j < i ≤ 29 sao cho hai đoạn AiAi+1 và AjAj+1 được tô cùng màu và i − j là bình phương của số nguyên dương. + Cho tam giác giác ABC nhọn nội tiếp (O), P thay đổi nằm trong tam giác sao cho E, F là hình chiếu của P lên CA, AB thì BFEC nội tiếp đường tròn (K). 1) Chứng minh rằng: AP ⊥ BC. 2) Chứng minh rằng: AP = 2OK. 3) Đường thẳng qua P vuông góc AP cắt (O) tại Q, R. Chứng minh rằng: (A; AP) tiếp xúc (KQR). + Với a, b, c là những số thực dương thỏa mãn điều kiện 1 a + 1 b + 1 c = 1. Chứng minh rằng?
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm 2022 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 sở GD&ĐT Bình Phước : + Một khu vườn hình chữ nhật có chiều dài lớn hơn chiều rộng là 6m. Tính chiều rộng và chiều dài khu vườn biết diện tích khu vườn là 280m2. + Cho tam giác ABC vuông tại A có AC = 12cm, B = 60°. Hãy tính C, AB, BC và diện tích tam giác ABC. + Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến SA, SB (A, B là các tiếp điểm). Kẻ đường kính AC của đường tròn (O), đường thẳng BC cắt đường tròn (O) tại điểm D (D khác C). a) Chứng minh tứ giác SAOB nội tiếp đường tròn. b) Chứng minh SA = SC.SD. c) Kẻ BH vuông góc với AC tại điểm H. Chứng minh đường thẳng SC đi qua trung điểm của đoạn thẳng BH.
Đề tuyển sinh vào lớp 10 năm 2022 trường THPT chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 năm 2022 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội (đề thi dành cho tất cả các thí sinh / đề Toán điều kiện / đề Toán chung / đề Toán vòng 1); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi CLB Toán Lim: Nguyễn Duy Khương – Nguyễn Hoàng Việt – Trịnh Đình Triển – Khôi Hà – Nguyễn Văn Hoàng – Nguyễn Khang). Trích dẫn đề tuyển sinh vào lớp 10 năm 2022 trường THPT chuyên KHTN – Hà Nội : + Trên bàn có 8 hộp rỗng (trong các hộp không có viên bi nào). Người ta thực hiện các lần thêm bi vào các hộp theo quy tắc sau: mỗi lần chọn ra 4 hộp bất kỳ và bỏ vào 1 hộp 1 viên, 1 hộp 2 viên, 2 hộp còn lại 3 viên. Hỏi số lần thêm bi ít nhất có thể để nhận được số bi ở 8 hộp trên là 8 số tự nhiên liên tiếp? + Cho hình chữ nhật ABCD (AB < AD) nội tiếp trong đường tròn (O). Trên cạnh AD lấy hai điểm E và F (E và F không trùng với A và D) sao cho E nằm giữa A và F, đồng thời ∠ABE + ∠DCF = 1 2 ∠BOC. 1) Chứng minh rằng BE cắt CF tại một điểm nằm trên đường tròn (O). 2) Đường thẳng qua O ∥ BC cắt BE và CF lần lượt tại M và N. Chứng minh rằng ∠D AM + ∠ADN + 1 2 ∠AOD = 180o. 3) Dựng hình chữ nhật MNPQ sao cho NQ ∥ BD và MP ∥ AC. Chứng minh rằng đường tròn (MNPQ) tiếp xúc với (O). + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: 25y2 + 354x + 60 = 36×2 + 305y + (5y − 6x)2022.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi gồm 20 câu trắc nghiệm (03 điểm) và 05 câu tự luận (07 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Bảy ngày 04 tháng 06 năm 2022.