Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2021 2022 trường THPT Nguyễn Gia Thiều Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2021 2022 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm 2021 – 2022 trường THPT Nguyễn Gia Thiều – Hà Nội; đề thi gồm 08 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề). Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2021 – 2022 trường THPT Nguyễn Gia Thiều – Hà Nội : + Trong các quy tắc sau, quy tắc nào không phải là một hàm số? A. Quy tắc đặt tương ứng mỗi số thực dương với căn bậc hai của nó. B. Quy tắc đặt tương ứng mỗi số thực với căn bậc ba của nó. C. Quy tắc đặt tương ứng mỗi số thực với bình phương của nó. D. Quy tắc đặt tương ứng mỗi số thực dương với giá trị tuyệt đối của nó. + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oxy, trong đó x là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên; y là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá từ độ cao 1,0m. Sau đó 1 giây, quả bóng đạt độ cao 3m và 2 giây sau khi đá lên, nó ở độ cao 4m (xem hình vẽ sau). Hỏi sau bao lâu thì quả bóng sẽ đạt được độ cao lớn nhất kể từ khi đá lên (tính chính xác đến hàng phần trăm)? + Xét lời giải bài toán sau khi giải phương trình. Thử lại ta thấy x = 2 không thỏa mãn phương trình đã cho. Vậy phương trình đã cho vô nghiệm. Hỏi lời giải trên đúng hay sai. Nếu sai thì sai ở bước nào? A. Lời giải đúng. B. Sai ở bước 2 C. Sai ở bước 3 D. Sai ở bước 1. + Cho tam giác ABC đều cạnh a và k là một số thực âm thay đổi. Tập hợp các điểm M thỏa mãn 31 k MA MB kMC O là A. Một đường tròn có bán kính bằng a. B. Một đoạn thẳng có độ dài bằng 2 a. C. Một đoạn thẳng có độ dài bằng 4 a. D. Một đoạn thẳng có độ dài bằng a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại C. Biết điểm A B 2 4 6 4 và điểm C nằm phía trên trục hoành. Tính độ dài đoạn thẳng CO? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I lớp 10 môn Toán
Nội dung Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I lớp 10 môn Toán Bản PDF Tài liệu gồm 48 trang được biên soạn bởi thầy Lương Tuấn Đức (Facebook: Giang Sơn) tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I môn Toán lớp 10, giúp học sinh ôn tập để chuẩn bị cho kỳ thi HK1 Toán lớp 10 tại trường. Các đề thi được biên soạn theo dạng đề trắc nghiệm, mỗi đề gồm 50 câu, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn tài liệu tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ I môn Toán lớp 10: + Tìm mệnh đề đúng đối với phương trình √x(x – 1) + √x(x + 2) = 2√x^2. A. Tập xác định của phương trình là [1;+vc). B. Phương trình có tổng các nghiệm bằng 1,125. C. Phương trình đã cho tương đương phương trình √x(10x – 9) = 0. D. Phương trình tồn tại nghiệm không vượt quá – 2. [ads] + Biết rằng phương trình 2x^2 + 2xsina = 2x + cosa^2 luôn có nghiệm với mọi giá trị của a. Ký hiệu P, Q tương ứng là giá trị lớn nhất, giá trị nhỏ nhất của tổng bình phương hai nghiệm. Tính 3P + 2Q. + Cho hình vuông ABCD, các điểm E, F, G, H theo thứ tự là trọng tâm các tam giác ADC, DCB, ABC, ABD. Ký hiệu d1, d2, d3, d4 tương ứng là các đường thẳng đi qua E và vuông góc với BD, đi qua F và vuông góc với AC, đi qua G và vuông góc với BD, đi qua H và vuông góc với AC. Tập hợp các điểm M thỏa mãn đẳng thức MA^2 + MB^2 + MC^2 – 3MD^2 = -4a^2/3 là đường thẳng nào sau đây?
Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phước Long TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phước Long TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Phước Long, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Phước Long – TP HCM : + Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = -x2 – 2x + 2. + Trong mặt phẳng với hệ tọa độ Oxy cho ba điểm A(3;8), B(-1;2) và C(6;-1). a) Chứng minh ba điểm A, B, C tạo thành một tam giác. Tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm tọa độ điểm E, biết E nằm trên trục Oy và tam giác ACE vuông tại E. c) Tìm tọa độ điểm H, biết rằng H thuộc đường thẳng d: y = x và độ dài đoạn BH bằng 5. + Cho phương trình (x2 + 2x – 3)(x2 – 2x – 3m + 2) = 0. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm kép.
Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Hữu Huân TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Hữu Huân TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Nguyễn Hữu Huân, thành phố Hồ Chí Minh gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi cuối học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Nguyễn Hữu Huân – TP HCM : + Tìm giá trị nhỏ nhất của hàm số y = 3√(x – 1) + 2√(5 – x) trên đoạn [1;5]. + Trong hệ tọa độ Oxy, cho tam giác ABC có A(-3;4), B(-2;1), C(1;2). Chứng minh ABC là tam giác vuông cân. Tính diện tích tam giác ABC. + Cho tam giác ABC có AB = 6, AC = 8, BC = 7. Tính độ dài đường trung tuyến AM và đường cao BH của tam giác ABC.
Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phan Đăng Lưu TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phan Đăng Lưu TP HCM Bản PDF Đề thi cuối học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Phan Đăng Lưu, thành phố Hồ Chí Minh gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Phan Đăng Lưu – TP HCM : + Giải các phương trình sau. + Cho hình vuông ABCD cạnh a, I là điểm trên cạnh CD sao cho CI = 3ID. Tính AI.AB. + Trong mặt phẳng Oxy cho A(1;1), B(-1;3). a) Tìm tọa độ điểm M sao cho MA = 3MB. b) Tìm tọa độ điểm A’ sao cho A’ là điểm đối xứng của A qua B. c) Tìm tọa độ điểm C thuộc trục hoành sao cho tam giác ABC cân tại C.