Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề hình bình hành, hình thoi

Nội dung Tài liệu dạy thêm học thêm chuyên đề hình bình hành, hình thoi Bản PDF Tài liệu dạy thêm học thêm chuyên đề hình bình hành, hình thoi là một tài liệu tổng hợp và tóm tắt kiến thức lý thuyết, cung cấp phương pháp giải toán và bài tập liên quan đến các dạng hình bình hành và hình thoi. Đây là tài liệu hỗ trợ cho giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán.

Phần I của tài liệu là tóm tắt lý thuyết về hình bình hành và hình thoi. Nội dung này giúp học sinh nắm vững các đặc điểm và tính chất cơ bản của hai loại hình này.

Phần II của tài liệu tập trung vào các dạng bài tập và phương pháp giải. Phần này được chia thành hai phần, A và B, tương ứng với hình bình hành và hình thoi.

Trong phần A, các dạng bài được trình bày dưới các mục con: Dạng 1 - Nhận biết hình bình hành, Dạng 2 - Cách vẽ hình bình hành, Dạng 3 - Tính chu vi và diện tích hình bình hành. Mỗi dạng bài sẽ được giải thích cách nhận biết hình bình hành, cách vẽ và các công thức tính diện tích, chu vi tương ứng.

Tương tự, trong phần B, các dạng bài liên quan đến hình thoi cũng được trình bày dưới các mục con: Dạng 1 - Nhận biết hình thoi, Dạng 2 - Cách vẽ hình thoi, Dạng 3 - Tính chu vi và diện tích hình thoi. Đối với từng dạng bài, cách nhận biết, cách vẽ và công thức tính diện tích, chu vi sẽ được trình bày chi tiết.

Tài liệu được thể hiện dưới định dạng file Word, giúp giáo viên và các chuyên gia dễ dàng chỉnh sửa và sử dụng trong quá trình giảng dạy và học tập.

Tóm lại, tài liệu dạy thêm học thêm chuyên đề hình bình hành, hình thoi gồm 13 trang và cung cấp kiến thức tổng quát, các dạng bài tập và phương pháp giải liên quan đến hai loại hình này. Nội dung tài liệu giúp học sinh nắm vững kiến thức và cải thiện kỹ năng giải toán, đồng thời hỗ trợ giáo viên trong việc dạy và giảng dạy môn Toán lớp 6.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề số tự nhiên theo chương trình SGK Toán 6 mới
Tài liệu gồm 117 trang, tóm tắt lý thuyết, bài tập trắc nghiệm và bài tập tự luận chuyên đề số tự nhiên theo chương trình SGK Toán 6 mới (Kết Nối Tri Thức Với Cuộc Sống, Cánh Diều, Chân Trời Sáng Tạo), đầy đủ các mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng cao, có đáp án và lời giải chi tiết. CHUYÊN ĐỀ 1: TẬP HỢP. CHUYÊN ĐỀ 2: CÁC PHÉP TÍNH TRONG TẬP HỢP SỐ TỰ NHIÊN. CHUYÊN ĐỀ 3: LŨY THỪA VỚI SỐ MŨ TỰ NHIÊN. CHUYÊN ĐỀ 4: TÍNH CHẤT CHIA HẾT VÀ DẤU HIỆU CHIA HẾT. CHUYÊN ĐỀ 5: SỐ NGUYÊN TỐ VÀ HỢP SỐ. PHÂN TÍCH MỘT SỐ RA THỪA SỐ NGUYÊN TỐ. CHUYÊN ĐỀ 6: ƯỚC CHUNG VÀ ƯỚC CHUNG LỚN NHẤT. BỘI CHUNG VÀ BỘI CHUNG NHỎ NHẤT.
Chuyên đề tính tổng dãy số có quy luật
Tài liệu gồm 103 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề tính tổng dãy số có quy luật, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT Dạng 1: Tổng các số hạng cách đều S = a1 + a2 + a3 + … + an. Dạng 2: Tính tổng có dạng S = 1 + a + a2 + a3 + … + an. Dạng 3: Tính tổng có dạng S = 1 + a2 + a4 + a6 + … + a2n. Dạng 4: Tính tổng có dạng S = a + a3 + a5 + a7 + … + a2n + 1. Dạng 5: Tính tổng có dạng S = 1.2 + 2.3 + 3.4 + 4.5 + … + n(n + 1). Dạng 6: Tính tổng có dạng S = 12 + 22 + 32 + 42 + … + n2. Dạng 7: Tính tổng có dạng S = 12 + 32 + 52 + … + (2k + 1)2. Dạng 8: Tính tổng có dạng S = 22 + 42 + 62 + … + (2k)2. Dạng 9: Tính tổng có dạng S = a1.a2 + a2.a3 + a3.a4 + … + an.an+1. Dạng 10: Tính tổng có dạng S = a1.a2.a3 + a2.a3.a4 + a3.a4.a5 + … + an.an+1.an+2. Dạng 11: Tính tổng có dạng S = 1 + 23 + 33 + … + n3. Dạng 12: Liên phân số. B. BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ THI HSG TOÁN 6
Chuyên đề so sánh
Tài liệu gồm 105 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề so sánh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT CHỦ ĐỀ 1: SO SÁNH LŨY THỪA. I. KIẾN THỨC CẦN NHỚ. II. CÁC DẠNG TOÁN. Dạng 1: So sánh hai số lũy thừa. Dạng 2: So sánh biểu thức lũy thừa với một số (so sánh hai biểu thức lũy thừa). Dạng 3: Từ việc so sánh lũy thừa tìm cơ số (số mũ) chưa biết. Dạng 4: Một số bài toán khác. CHỦ ĐỀ 2: SO SÁNH PHÂN SỐ. I. TÓM TẮT LÝ THUYẾT. II. CÁC DẠNG TOÁN. Phương pháp 1: Quy đồng mẫu dương. Phương pháp 2: Quy đồng tử dương. Phương pháp 3: Tích chéo với các mẫu dương. Phương pháp 4: Dùng số hoặc phân số làm trung gian. Phương pháp 5: Dùng tính chất. Phương pháp 6: Đổi phân số lớn hơn đơn vị ra hỗn số để so sánh. III. CÁC BÀI TẬP TỔNG HỢP. B. BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ HSG TOÁN 6
Chuyên đề chữ số tận cùng
Tài liệu gồm 45 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề chữ số tận cùng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT. 1. Tìm một chữ số tận cùng. Tính chất 1: + Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi. + Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi. + Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 1. + Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 6. Tính chất 2: + Một số tự nhiên bất kì khi nâng lên lũy thừa bậc 4n + 1 thì chữ số tận cùng vẫn không thay đổi. + Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng. Tính chất 3: + Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 7; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 3. + Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 8; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 2. + Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9 khi nâng lên lũy thừa bậc 4 3 n sẽ không thay đổi chữ số tận cùng. 2. Tìm hai chữ số tận cùng. Việc tìm hai chữ số tận cùng của số tự nhiên x chính là việc tìm số dư của phép chia x cho 100. 3. Tìm ba chữ số tận cùng trở lên. Việc tìm ba chữ số tận cùng của số tự nhiên x chính là việc tìm số dư của phép chia x cho 1000. II. CÁC DẠNG TOÁN. Dạng 1: Tìm một chữ số tận cùng. Dạng 2: Tìm hai chữ số tận cùng. Dạng 3: Tìm ba chữ số tận cùng. Dạng 4: Vận dụng chứng minh chia hết, chia có dư. Dạng 5: Vận dụng chữ số tận cùng vào bài toán chính phương. III. BÀI TẬP. B. BÀI TOÁN TRONG ĐỀ THI HSG VÀ CHUYÊN TOÁN 6