Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán

Tài liệu gồm 87 trang, được biên soạn bởi quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: Trần Ngọc Hùng, Ngụy Như Thái, Quảng Đại Hạn, Quảng Đại Phước, Đàng Xuân Phi, Quảng Đại Mưa, Nguyễn Văn Hồng, hướng dẫn phân tích chi tiết đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán. Dạng 1: Bài toán chỉ sử dụng P hoặc C hoặc A. Dạng 2: Tính xác suất bằng định nghĩa. Dạng 3: Tìm hạng tử trong cấp số nhân. Dạng 4: Xác định góc giữa hai mặt phẳng, đường và mặt. Dạng 5: Khoảng cách từ một điểm đến một mặt phẳng. Dạng 6: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng 7: Tìm cực trị dựa vào BBT, đồ thị. Dạng 8: Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng 9: Nhận dạng đồ thị, bảng biến thiên. Dạng 10: Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng 11: Xét tính đơn điệu của hàm số cho bởi công thức. Dạng 12: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 13: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 14: Câu hỏi lý thuyết. Dạng 15: Đạo hàm hàm số lũy thừa. Dạng 16: Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng 17: Bất phương trình cơ bản. Dạng 18: Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng 19: Phương pháp đặt ẩn phụ. Dạng 20: Phương pháp đưa về cùng cơ số. Dạng 21: Phương pháp đưa về cùng cơ số. Dạng 22: Phương pháp hàm số, đánh giá. Dạng 23: Định nghĩa, tính chất và tích phân cơ bản. Dạng 24: Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng 25: Định nghĩa, tính chất và tích phân cơ bản. Dạng 26: Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng 27: Phương pháp đổi biến số. Dạng 28: Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng 29: Xác định các yếu tố cơ bản của số phức. Dạng 30: Biểu diễn hình học cơ bản của số phức. Dạng 31: Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng 32: Bài toán tập hợp điểm. Dạng 33: Định lí Viet và ứng dụng. Dạng 34: Phương pháp đại số. Dạng 35: Tính thể tích các khối đa diện. Dạng 36: Các bài toán khác (góc, khoảng cách) liên quan đến thể tích khối đa diện. Dạng 37: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 38: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 39: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 40: Xác định VTPT. Dạng 41: Góc. Dạng 42: Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng 43: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 44: Viết phương trình đường thẳng. Dạng 45: Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 46: Các bài toán cực trị. Dạng 47: Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng.

Nguồn: toanmath.com

Đọc Sách

Bài toán thực tế và bài toán tối ưu min - max - Lê Viết Nhơn
Tài liệu gồm 23 trang tuyển chọn các bài toán thực tế và bài toán tối ưu min – max do thầy Lê Viết Nhơn sưu tầm và biên soạn, với nội dung gồm các phần: + Phần 1. Bài toán thực tế tối ưu+ Phần 2. Các bài toán thực tế liên quan đến tích phân + Phần 3. Bài toán thực tế liên quan đến mũ và lôgarit + Phần 4. Bài tập rèn luyện trích từ đề thi thử các trường THPT [ads] Trích dẫn tài liệu : + Một tấm kẽm hình vuông ABCD có cạnh bằng 30 cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. + Cho một tam giác đều ABC cạnh a. Người ta dựng một hình chữ nhật MNPQ có cạnh MN nằm trên cạnh BC, hai đỉnh P và Q theo thứ tự nằm trên hai cạnh AC và AB của tam giác. Xác định vị trí của điểm M sao cho hình chữ nhật có diện tích lớn nhất và tìm giá trị lớn nhất đó. + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n) = 480 – 20n gam. Hỏi phải thả bao nhiêu cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất?
Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 - 2017 môn Toán - Đoàn Quỳnh
Sách gồm 246 trang với 2 phần: + Phần 1. Ôn tập theo chủ đề. Phần này ôn lại những kiến thức, kỹ năng cần thiết cùng một số câu trắc nghiệm theo 7 chủ đề chương trình Toán 12. + Phần 2. Một số đề tự luyện, đưa ra 9 đề, được biên soạn phỏng theo đề minh họa của Bộ GD và ĐT đã được công bố. Sách do Nhà xuất bản Giáo dục Việt Nam phát hành. [ads]
Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán - Trần Công Diêu
Sách gồm 449 trang với 11 chuyên đề: + Chuyên đề 1. Ứng dụng đạo hàm + Chuyên đề 2. Hàm số lũy thừa, mũ và logarit + Chuyên đề 3. Nguyên hàm, tích phân và ứng dụng + Chuyên đề 4. Số phức + Chuyên đề 5. Hình học không gian + Chuyên đề 6. Phương pháp tọa độ trong không gian + Chuyên đề 7. Lượng giác + Chuyên đề 8. Đại số tổ hợp và xác suất + Chuyên đề 9. Giới hạn, liên tục + Chuyên đề 10. Hình học Oxy + Chuyên đề 11. Phương trình, bất phương trình đại số [ads]
131 bài toán ứng dụng thực tiễn có lời giải chi tiết - Trần Văn Tài
Tài liệu gồm 74 trang với 131 bài toán ứng dụng thực tiễn thường gặp do thầy Trần Văn Tài biên soạn. Các bài toán đều có lời giải chi tiết. Trích một số phần trong tài liệu: 1. Đường dây điện 110KV kéo từ trạm phát (điểm A) trong đất liền ra Côn Đảo (điểm C). biết khoảng cách ngắn nhất từ C đến B là 60km, khoảng cách từ A đến B là 100km, mỗi km dây điện dưới nước chi phí là 5000 USD, chi phí cho mỗi km dây điện trên bờ là 3000 USD. Hỏi điểm G cách A bao nhiêu để mắc dây điện từ A đến G rồi từ G đến C chi phí ít nhất. [ads] 2. Cho một tấm nhôm hình vuông cạnh 6 cm. Người ta muốn cắt một hình thang như hình vẽ. Tìm tổng x + y để diện tích hình thang EFGH đạt giá trị nhỏ nhất. 3. Nhân ngày phụ nữ Việt Nam 20 -10 năm 2017 , ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp . Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp , biết rằng độ dạy lớp mạ tại mọi điểm trên hộp là như nhau . Gọi chiều cao và cạnh đáy của chiếc hộp lần lượt là h; x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của h; x phải là ?