Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Số phức và các phép toán về số phức - Diệp Tuân

Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Diệp Tuân, hướng dẫn giải các dạng toán số phức và các phép toán về số phức trong chương trình Giải tích 12 chương 4 bài số 1. Khái quát nội dung tài liệu số phức và các phép toán về số phức – Diệp Tuân: Nhóm bài toán 1 . Tính toán cộng trừ, nhân chia các số phức. + Áp dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. + Số phức và thuộc tính của nó. + Lũy thừa đơn vị ảo. Nhóm bài toán 2 . Hai số phức bằng nhau. + Áp dụng các công thức cộng, trừ, nhân, chia số phức để rút gọn đưa về tính chất hai số phức bằng nhau. + a + bi = c + di khi và chỉ khi a, b, c, d thuộc R. Nhóm bài toán 3 . Tính toán số phức có chứa lũy thừa đơn vị ảo i^n. + Áp dụng các công thức lũy thừa đơn vị ảo. + Áp dụng các phép toán cộng trừ, nhân chai số phức. [ads] Nhóm bài toán 4 . Tìm phần thực, phần ảo, số phức liên hợp và môđun của z, w. + Áp dụng phép chia hai số phức, ta cần nhân thêm số phức liên hợp của mẫu số. + Nếu sử dụng casio, ta chuyển về chế độ CMPLX (mode 2) (i tương ứng ENG). + Khi bài toán yêu cầu tìm các thuộc tính của số phức (phần thực, phần ảo, môđun hoặc số phức liên hợp) mà đề bài cho giả thiết chứa hai thành phần trong ba thành phần thì ta sẽ gọi số phức z rồi sau đó thu gọn và sử dụng kết quả hai số phức bằng nhau, giải hệ. Nhóm bài toán 5 . Các số phức z thỏa mãn biểu thức số phức là số thực, số thuần ảo. + Số phức z thuần ảo ⇔ phần thực a = 0. + Số phức z là số thực ⇔ phần ảo b = 0. Nhóm bài toán 6 . Nhóm bài toán lấy môđun hai vế của đẳng thức số phức. + Sử dụng phép kéo theo của hai số phức bằng nhau. + Kỹ thuật này chỉ được thực hiện được khi biểu thức giả thiết của bài toán được đưa về các dạng chuẩn. Nhóm bài toán 7 . Chuẩn hóa số phức. 

Nguồn: toanmath.com

Đọc Sách

Giải bài toán cực trị số phức bằng phương pháp hình học giải tích - Nguyễn Hữu Tình
Tài liệu gồm 26 trang được biên soạn bởi thầy Nguyễn Hữu Tình (giáo viên trường THPT chuyên Võ Nguyên Giáp – Quảng Bình) hướng dẫn giải bài toán cực trị số phức bằng phương pháp hình học giải tích, đây là lớp các bài toán vận dụng cao số phức và thường xuất hiện trong đề thi THPT Quốc gia 2018. Trong chương trình Toán THPT, phần Đại số mà cụ thể là phần Số học, ở chương trình lớp 12, học sinh được hoàn thiện hiểu biết của mình về các tập hợp số thông qua việc cung cấp một tập hợp số, gọi là Số phức. Trong chương này, học sinh đã bước đầu làm quen với các phép toán cộng, trừ, nhân, chia, khai căn, lũy thừa; lấy môđun, … các số phức. Bằng cách đặt tương ứng mỗi số phức z = x + yi (x, y ∈ R) với mỗi điểm M(x;y) trên mặt phẳng tọa độ Oxy, ta thấy giữa Đại số và Hình học có mối liên hệ với nhau khá “gần gũi”. Hơn nữa, nhiều bài toán Đại số bên Số phức, khi chuyển sang Hình học, từ những con số khá trừu tượng, bài toán đã được minh họa một cách rất trực quan, sinh động và cũng giải được bằng Hình học với phương pháp rất đẹp. Đặc biệt, trong các kỳ thi Đại học, Cao đẳng và THPT Quốc gia những năm gần đây, việc sử dụng phương pháp Hình học để giải quyết các bài toán về Số phức là một trong những phương pháp khá hay và hiệu quả, đặc biệt là các bài toán về Cực trị trong số phức. Hơn nữa, với những bài toán Hình học theo phương pháp trắc nghiệm, nếu khi biểu diễn được trên giấy thì qua hình ảnh minh họa, ta có thể lựa chọn đáp án một cách dễ dàng. [ads] Tuy nhiên, trong thực tế giảng dạy, việc chuyển từ bài toán Đại số nói chung và Số phức nói riêng sang bài toán Hình học ở nhiều học sinh nói chung còn khá nhiều lúng túng, vì vậy việc giải các bài toán về Số phức gây ra khá nhiều khó khăn cho học sinh. Bài toán Cực trị Số phức thông thường thì có khá nhiều cách lựa chọn để giải như dùng Bất đẳng thức, dùng Khảo sát hàm số … Qua chuyên đề này, tôi muốn gợi ý cho học sinh một lối tư duy vận dụng linh hoạt các phương pháp chuyển đổi từ bài toán Đại số sang Hình học cho học sinh, giúp các em có cái nhìn cụ thể hơn về việc chuyển đổi đó và vận duy tư duy này cho những bài toán khác. Với mục tiêu đó, trong chuyên đề này, tôi chỉ tập trung giải quyết bài toán theo hướng Hình học. Không đặt nặng việc so sánh phương pháp nào nhanh hơn, tối ưu hơn phương pháp nào.
Bài toán min - max số phức có lời giải chi tiết - Lương Văn Huy
Tài liệu gồm 53 trang được biên soạn bởi thầy Lương Văn Huy tuyển tập bài toán min – max số phức có lời giải chi tiết, các bài toán được trích dẫn từ các đề thi thử môn Toán THPT Quốc gia. Tài liệu phù hợp với đối tượng học sinh khá, giỏi muốn ôn tập chinh phục điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán. Một số tính chất cần nhớ 1. Môđun của số phức 2. Một số quỹ tích nên nhớ [ads] Một số dạng đặc biệt cần lưu ý + Dạng 1: Quỹ tích điểm biểu diễn số phức là đường thẳng + Dạng 2: Quỹ tích điểm biểu diễn số phức là đường tròn + Dạng 3: Quỹ tích điểm biểu diễn số phức là Elip
Trắc nghiệm nâng cao số phức - Đặng Việt Đông
Tài liệu gồm 84 trang được biên soạn bởi thầy Đặng Việt Đông tuyển tập các bài toán trắc nghiệm nâng cao số phức có hướng dẫn giải chi tiết, các bài toán được trích dẫn từ các đề thi thử môn Toán của các trường THPT và cơ sở GD – ĐT trên toàn quốc, tài liệu phù hợp với các em học sinh khá, giỏi nhằm ôn luyện điểm 8 – 9 – 10 hướng đến kỳ thi THPT Quốc gia môn Toán. Các dạng toán số phức nâng cao : + Dạng 1: Tính toán trên số phức + Dạng 2: Phương trình trên số phức + Dạng 3: Tìm tập hợp điểm, biểu diễn số phức + Dạng 4: Số phức có môđun nhỏ nhất, lớn nhất + Dạng 5: GTLN, GTNN trên số phức [ads] Xem thêm : + Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông + Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông
Tài liệu tự học chủ đề số phức - Trần Quốc Nghĩa
Tài liệu tự học chủ đề số phức do thầy Trần Quốc Nghĩa biên soạn gồm 84 trang giới thiệu các dạng toán số phức điển hình và hướng dẫn phương pháp giải, trong mỗi dạng gồm hệ thống các bài tập tự luận – trắc nghiệm có đáp án giúp học sinh tự học tại nhà. Nội dung tài liệu : Vấn đề 1. DẠNG ĐẠI SỐ CỦA SỐ PHỨC  Dạng 1: Số phức và thuộc tính của nó Dạng 2: Các phép toán về số phức Dạng 3: Chứng minh tính chất của số phức Dạng 4: Tập hợp điểm Vấn đề 2. CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH Dạng 1: Căn bậc hai của số phức Dạng 2: Phương trình Vấn đề 3. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC Dạng 1: Viết dạng lượng giác của số phức Dạng 2: Công thức Moivre [ads] Vấn đề 4. BÀI TẬP TRẮC NGHIỆM SỐ PHỨC 1 – Dạng đại số của số phức 2 – Phương trình trên tập số phức 3 – Tập hợp điểm 4 – Giá trị lớn nhất nhỏ nhất của môđun số phức Vấn đề 5. SỐ PHỨC TRONG CÁC ĐỀ THI ĐH – CĐ – THPTQG Phần 1: Các đề tự luận trước 2017 Phần 2. Các đề minh họa, đề chính thức kỳ thi THPTQG 2017 – 2018 Vấn đề 6. CÁC ĐỀ KIỂM TRA 1 TIẾT GIẢI TÍCH 12 CHƯƠNG 4