Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề rút gọn phân thức

Nội dung Chuyên đề rút gọn phân thức Bản PDF - Nội dung bài viết Tóm tắt chuyên đề rút gọn phân thứcTóm tắt lý thuyếtBài tập và các dạng toán Tóm tắt chuyên đề rút gọn phân thức Chuyên đề rút gọn phân thức là một phần quan trọng trong chương trình Đại số 8 chương 2: Phân thức đại số. Tài liệu được biên soạn gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao. Tóm tắt lý thuyết Để rút gọn phân thức, ta cần sử dụng các phương pháp phân tích đa thức thành nhân tử để biến đổi cả tử và mẫu của phân thức. Sau đó, sử dụng các tính chất cơ bản của phân thức đã học để rút gọn phân thức đã cho. Bài tập và các dạng toán Trên tài liệu, các dạng toán chính bao gồm: Dạng 1: Rút gọn phân thức bằng cách phân tích tử thức và mẫu thức thành nhân tử, sau đó rút gọn bằng cách triệt tiêu nhân tử chung. Dạng 2: Chứng minh đẳng thức, tương tự các bước chứng minh đẳng thức đã học trong chuyên đề trước. Dạng 3: Rút gọn biểu thức với điều kiện cho trước, sử dụng phương pháp phân tích đa thức thành nhân tử và các tính chất cơ bản của phân thức. Dạng 4: Chứng minh biểu thức không phụ thuộc vào biến x, thông qua việc rút gọn phân thức sao cho không còn các ẩn. Để làm bài tập hiệu quả, học sinh cần hiểu rõ lý thuyết và áp dụng đúng các phương pháp đã học. Tài liệu cũng cung cấp đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và cải thiện kỹ năng giải toán của mình.

Nguồn: sytu.vn

Đọc Sách

Đề cương học kỳ 2 Toán 8 năm 2023 - 2024 trường THCS Hoàng Hoa Thám - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kỳ 2 môn Toán 8 năm học 2023 – 2024 trường THCS Hoàng Hoa Thám, quận Ba Đình, thành phố Hà Nội. I. KIẾN THỨC TRỌNG TÂM 1. Đại số: – Chương VI. Phân thức đại số. – Chương VII: Phương trình bậc nhất một ẩn và hàm số bậc nhất. 2. Hình học: – Chương IX. Tam giác đồng dạng. – Chương X: Một số hình khối trong thực tiễn. II. CÁC DẠNG BÀI TẬP THAM KHẢO
Đề cương học kì 2 Toán 8 năm 2023 - 2024 trường THCS Phan Chu Trinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Phan Chu Trinh, quận Ba Đình, thành phố Hà Nội. Giới hạn chương trình: Hết Tuần 30. * Đại số : – Phân thức đại số. – Phương trình, giải bài toán bằng cách lập phương trình. – Hàm số bậc nhất và đồ thị của hàm số bậc nhất. – Kết quả có thể và kết quả thuận lợi. – Cách tính xác suất của biến cố bằng tỉ số. * Hình học : – Tam giác đồng dạng. – Định lý Pytago và ứng dụng. – Các TH đồng dạng của hai tam giác vuông. – Hình đồng dạng. – Hình chóp tam giác đều.
Ôn tập cuối học kì 2 Toán 8 năm 2023 - 2024 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn nội dung ôn tập kiểm tra cuối học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội. PHẦN I : NỘI DUNG KIẾN THỨC CẦN ÔN TẬP. 1. Các đơn vị kiến thức đã học từ tuần 19 đến hết tuần 31. 2. Một số câu hỏi trọng tâm. Câu 1. Nêu cách tính xác suất thực nghiệm của biến cố ngẫu nhiên trong trò chơi tung đồng xu, trò chơi vòng quay số và trong trò chơi chọn ngẫu nhiên một đối tượng từ một nhóm đối tượng. Câu 2. Thế nào là phương trình, nghiệm của phương trình, giải phương trình? Câu 3. Phương trình bậc nhất một ẩn có dạng nào? Cách giải phương trình bậc nhất một ẩn và ứng dụng của phương trình bậc nhất một ẩn. Câu 4. Phát biểu ba trường hợp đồng dạng của tam giác thường, các trường hợp đồng dạng của tam giác vuông? Câu 5. Thế nào là hình đồng dạng phối cảnh? Câu 6. Hai tam giác bằng nhau có là hai hình đồng dạng không? PHẦN II : MỘT SỐ DẠNG BÀI TẬP MINH HỌA.
Đề cương học kì 2 Toán 8 năm 2023 - 2024 trường THCS Chu Văn An - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Chu Văn An, huyện Thanh Trì, thành phố Hà Nội. A. ĐẠI SỐ Dạng 1. Phân thức đại số. Dạng 2. Phương trình. Dạng 3. Hàm số và đồ thị hàm số bậc nhất. Dạng 4. Xác suất. Dạng 5. Nâng cao. B. HÌNH HỌC Dạng 6. Hình phẳng. Dạng 7. Hình không gian.