Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề hình có tâm đối xứng

Nội dung Tài liệu dạy thêm học thêm chuyên đề hình có tâm đối xứng Bản PDF Tài liệu dạy thêm và học thêm về chuyên đề hình có tâm đối xứng là một tài liệu học được thiết kế để hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu này bao gồm tổng cộng 14 trang, trong đó có một phần tóm tắt lý thuyết và các phần hướng dẫn phương pháp giải các dạng toán và bài tập liên quan đến chuyên đề hình có tâm đối xứng.

Phần tóm tắt lý thuyết của tài liệu giải thích về khái niệm và cách kiểm tra xem một hình có tâm đối xứng hay không. Đầu tiên, để kiểm tra xem một hình có tâm đối xứng hay không, ta có thể lấy một điểm bất kỳ trên hoặc trong hình và lấy đối xứng qua tâm. Nếu điểm đó vẫn thuộc hình ban đầu, thì hình đó có tâm đối xứng. Ngược lại, nếu điểm đó không thuộc hình, thì hình không có tâm đối xứng.

Phần tiếp theo của tài liệu trình bày về các dạng bài liên quan đến tâm đối xứng của hình. Đối với những hình có tâm đối xứng, số cạnh của hình (viền ngoài) sẽ là số chẵn. Ví dụ như hình bình hành, hình chữ nhật, hình vuông và hình thoi. Trong thiên nhiên, hình ảnh của bông hoa có tâm đối xứng nằm ở giữa, hình ảnh của cỏ bốn lá cũng có tâm đối xứng. Ngoài ra, tâm đối xứng của hình có số cạnh bằng nhau chính là giao điểm của các đường chéo.

Tài liệu cũng giới thiệu về cách kiểm tra xem một chữ có tâm đối xứng hay không. Đầu tiên, ta cần đoán trước tâm đối xứng của chữ (thường là điểm nằm chính giữa chữ), sau đó lấy một điểm bất kỳ và kiểm tra. Nếu có một điểm khác đối xứng với điểm đã chọn mà vẫn thuộc chữ, thì chữ có tâm đối xứng.

Một phần khác của tài liệu đề cập đến việc vẽ hình đối xứng qua một điểm. Để vẽ một điểm A' đối xứng với điểm A qua tâm O, ta dựng một đường tròn với tâm O và bán kính là OA. Đường tròn này cắt đường thẳng OA tại điểm A' khác A. Khi đó, điểm A' là điểm đối xứng của A qua O. Để vẽ hai hình đối xứng qua một điểm O, ta chọn một số điểm đặc biệt thuộc hình đó, lấy đối xứng qua O và nối các điểm đó lại để tạo thành hình mới đối xứng với hình ban đầu qua tâm O.

Cuối cùng, tài liệu giới thiệu về cách tính độ dài, chu vi và diện tích của hình có tâm đối xứng. Khi tính toán độ dài đoạn thẳng có tâm đối xứng, ta chú ý rằng tâm đối xứng là điểm chính giữa hoặc trung điểm của đoạn thẳng đó. Nói cách khác, khi tâm đối xứng O là trung điểm của đoạn AB, ta có: OA = OB = AB/2. Tài liệu cũng liệt kê một số hình phẳng thường gặp có tâm đối xứng, như hình bình hành, hình vuông, hình chữ nhật, hình thoi và hình lục giác đều. Tâm đối xứng của các hình này tổn tại tại giao điểm của các đường chéo chính hoặc trung điểm của mỗi đường chéo.

Để tính toán chu vi và diện tích của các hình có tâm đối xứng, ta có thể áp dụng công thức đã học trong chương IV của môn Toán. Sau khi đo đạc và tính toán độ dài các cạnh và đường chéo, ta có thể sử dụng công thức để tính toán chu vi và diện tích của các hình.

Tài liệu này được định dạng file WORD để thuận tiện cho việc sử dụng bởi quý thầy cô giáo.

Nguồn: sytu.vn

Đọc Sách

Tài liệu dạy thêm - học thêm chuyên đề tập hợp các số nguyên
Tài liệu gồm 12 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tập hợp các số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÝ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Điền kí hiệu thích hợp vào chỗ trống. – Dạng điền kí hiệu. – Tập hợp số tự nhiên. – Tập hợp số nguyên gồm các số nguyên âm, số 0 và số nguyên dương. – A B nếu mọi phần tử của A đều thuộc B. – Dạng điền Đ (đúng) hoặc chữ S (sai); đánh dấu “x” vào ô đúng hoặc sai. Dạng 2 . Biểu diễn số nguyên trên trục số. Trục số là hình biểu diễn gồm một đường thẳng nằm ngang hoặc thẳng đứng, một đầu gắn với mũi tên (biểu thị chiều dương) được chia thành các khoảng bằng nhau (được gọi là đơn vị) và ghi kèm các số tương ứng. Điểm 0 (biểu diễn số 0) được gọi là điểm gốc của trục số (thường đặt tên là O). Điểm biểu diễn số a trên trục số gọi là điểm a. Với trục số nằm ngang: Chiều từ trái sang phải là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Với trục số thẳng đứng: Chiều từ dưới lên trên là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Dạng 3 . So sánh hai hay nhiều số nguyên. Cách 1 : Biểu diễn các số nguyên cần so sánh trên trục số. Giá trị các số nguyên tăng dần từ trái sang phải (điểm a nằm bên trái điểm b thì số nguyên a bé hơn số nguyên b). Cách 2 : Căn cứ vào các nhận xét sau: Số nguyên dương lớn hơn 0. Số nguyên âm nhỏ hơn 0. Số nguyên dương lớn hơn số nguyên âm. Trong hai số nguyên dương, số nào có giá trị tuyệt đối lớn hơn thì số ấy lớn hơn. Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì số ấy lớn hơn. Kiến thức về giá trị tuyệt đối: – Giá trị tuyệt đối của một số tự nhiên là chính nó. – Giá trị tuyệt đối của một số nguyên âm là số đối của nó. – Giá trị tuyệt đối của một số nguyên là một số tự nhiên. – Hai số nguyên đối nhau có cùng một giá trị tuyệt đối. Dạng 4 . Viết tập hợp số. Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C …. Hai cách viết tập hợp số: Cách 1: Liệt kê các phần tử. Cách 2: Chỉ ra các tính chất đặc trưng. Chú ý: + Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số. + Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. Dạng 5 . Sử dụng số nguyên âm trong thực tế. Số dương và số âm được dùng để biểu thị các đại lượng đối lập nhau hoặc có hướng ngược nhau. Số âm thường dùng để chỉ: – Nhiệt độ dưới 0C. – Độ cao dưới mực nước biển. – Số tiền còn nợ. – Số tiền lỗ. – Độ cận thị. – Thời gian trước Công Nguyên.
Tài liệu dạy thêm - học thêm chuyên đề ước và bội của số tự nhiên, ƯCLN và BCNN
Tài liệu gồm 21 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề ước và bội của số tự nhiên, ƯCLN và BCNN, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. A. ƯỚC VÀ BỘI, ƯỚC CHUNG VÀ BỘI CHUNG CỦA SỐ TỰ NHIÊN. Dạng 1. Nhận biết một số là ước (bội) của một số cho trước. Dạng 2. Tìm tất cả các ước (bội) của một số. Dạng 3. Tìm số tự nhiên thỏa mãn điều kiện chia hết. Dạng 4. Viết tập hợp các ước chung (bội chung) của hai hay nhiều số. Dạng 5. Bài toán có lời văn. B. ƯỚC CHUNG LỚN NHẤT. Dạng 1. Tìm ước chung lớn nhất của các số cho trước. Dạng 2. Tìm các ước chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Dạng 3. Bài toán có lời văn đưa về tìm ƯCLN. Dạng 4. Chứng minh hai hay nhiều số là các số nguyên tố cùng nhau. C. BỘI CHUNG NHỎ NHẤT. Dạng 1. Tìm bội chung nhỏ nhất của các số cho trước. Dạng 2. Tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Dạng 3. Tim các số tự nhiên thỏa mãn điều kiện cho trước. Dạng 4: Bài toán có lời văn.
Tài liệu dạy thêm - học thêm chuyên đề phép chia hết
Tài liệu gồm 28 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép chia hết, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Tính chất chia hết của một tổng, hiệu, tích, luỹ thừa. Dạng 1.1. Tính chia hết của một tổng, hiệu. Dạng 1.2. Tính chia hết của một tích. Dạng 1.3. Xét tính chia hết của một tổng các lũy thừa cùng cơ số. Dạng 2 . Dấu hiệu chia hết cho 2, 5. Dạng 2.1. Dấu hiệu chia hết cho 2, 5. Dạng 2.2. Xét tính chia hết cho 2, cho 5 của một tổng (hiệu). Dạng 2.3. Lập các số chia hết cho 2, cho 5 từ những chữ số cho trước. Dạng 2.4. Tìm các chữ số của một số thỏa mãn điều kiện chia hết cho 2, cho 5. Dạng 2.5. Tìm tập hợp các số tự nhiên chia hết cho 2, 5 thỏa mãn điều kiện cho trước. Dạng 3 . Dấu hiệu chia hết cho 3, cho 9. Dạng 3.1. Dấu hiệu chia hết cho 3, 9. Dạng 3.2. Xét tính chia hết cho 3, cho 9 của một tổng (hiệu). Dạng 3.3. Lập các số chia hết cho 3, cho 9 từ những chữ số cho trước. Dạng 3.4. Viết các số chia hết cho 3, 9 từ các số hoặc chữ số cho trước. Dạng 4 . Số nguyên tố. Hợp số. Dạng 4.1. Nhận biết số nguyên tố, hợp số. Dạng 4.2. Tìm các chữ số của mội số sao cho số đó là số nguyên tố hoặc hợp số. Dạng 5 . Phân tích một số ra thừa số nguyên tố. Dạng 5.1. Phân tích một số ra thừa số nguyên tố. Dạng 5.2. Xác định các ước của một số. Dạng 5.3. Xác định số lượng các ước của một số. Dạng 5.4. Bài toán đưa về việc phân tích một số ra thừa số nguyên tố.
Tài liệu dạy thêm - học thêm chuyên đề thứ tự thực hiện phép tính
Tài liệu gồm 17 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề thứ tự thực hiện phép tính, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính. + Đối với biểu thức không chứa dấu ngoặc ta thực hiện phép tính theo thứ tự của chiều mũi tên như sau: Luỹ thừa → Nhân – Chia → Cộng – Trừ. Được hiểu là: “Thực hiện nhân chia trước cộng trừ sau”. + Đối với biểu thức chứa dấu ngoặc, ta thực hiện phép tính trong từng loại ngoặc theo thứ tự của chiều mũi tên như sau: () → [] → {}. Được hiểu là “thực hiện từ trong ra ngoài”. Dạng 2 . Tìm x. 1. Nhắc lại các dạng toán “tìm x” cơ bản. 1.1 Tìm số hạng chưa biết trong một tổng. Muốn tìm số hạng chưa biết trong một tổng, ta lấy tổng trừ đi số hạng đã biết. 1.2 Tìm số bị trừ trong một hiệu. Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ x a b x b a. 1.3 Tìm số trừ trong một hiệu. Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu a x b x a b. 1.4 Tìm thừa số chưa biết trong một tích. Muốn tìm thừa số chưa biết trong một tích, ta lấy tích chia cho thừa số đã biết. 1.5 Tìm số bị chia trong một thương. Muốn tìm số bị chia ta lấy thương nhân với số chia x a b x b a. 1.6 Tìm số chia trong một thương. Muốn tìm số chia, ta lấy số bị chia chia cho thương a x b x a b. 2. Phương pháp giải bài toán “tìm x” ở các dạng mở rộng. Trong các dạng tìm x mở rộng nào ta cũng phải tìm phần ưu tiên có chứa x (có thể là tìm một lần hoặc tìm nhiều lần) để đưa về dạng cơ bản. Do đó, trong các bài toán “tìm x” ở dạng mở rộng ta phải tìm ra phần ưu tiên trong một bài toán tìm x. 2.1 Dạng ghép. 2.2 Dạng tích. 2.3 Dạng nhiều dấu ngoặc. 3. Phương pháp giải bài toán “tìm x” ở các dạng lũy thừa. Với dạng toán có lũy thừa, tính lũy thừa trước nếu các lũy thừa không chứa x. Tính ra số tự nhiên hoặc sử dụng các phép toán nhân, chia hai lũy thừa cùng cơ số, tùy vào bài toán cụ thể. Dạng 3 . Các bài toán liên quan đến dãy số, tập hợp. Tính tổng dãy số: Tổng = (Số đầu + Số cuối) . Số số hạng : 2. Số các số hạng = (Số cuối – Số đầu) : Khoảng cách giữa hai số liên tiếp + 1. Dạng 4 . Bài toán có lời văn.