Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán Lư Sĩ Pháp (Tập 1)

Nội dung Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán Lư Sĩ Pháp (Tập 1) Bản PDF - Nội dung bài viết Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán Lư Sĩ Pháp (Tập 1) Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán Lư Sĩ Pháp (Tập 1) Sytu tự hào giới thiệu tới các bạn tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán (Tập 1) do thầy Lư Sĩ Pháp biên soạn. Tài liệu này bao gồm 158 trang tổng hợp các dạng toán và bài tập từ các chuyên đề thuộc chương trình Giải tích lớp 12. Chuyên đề 1: Ứng dụng của đạo hàm – Khảo sát và vẽ đồ thị hàm số – Bài toán liên quan. Đây là một trong những chuyên đề quan trọng trong lĩnh vực giải tích. Tài liệu cung cấp nhiều dạng bài tập khác nhau để giúp các em rèn luyện kỹ năng và nắm vững lý thuyết. Chuyên đề 2: Lũy thừa – Mũ – Lôgarit. Phương trình, bất phương trình Mũ – Lôgarit và các bài toán ứng dụng thực tế. Đây là một chuyên đề khá phức tạp, nhưng tài liệu đã được biên soạn một cách cụ thể và dễ hiểu, giúp các em tiếp cận một cách dễ dàng hơn. Chuyên đề 3: Nguyên hàm – Tích phân – Ứng dụng của tích phân trong hình học. Đây là phần rất quan trọng trong giải tích, và tài liệu cung cấp các phương pháp tìm nguyên hàm, tính tích phân và ứng dụng của tích phân trong hình học. Chuyên đề 4: Số phức. Trong phần này, các em sẽ được giới thiệu với các kiến thức về số phức và các phép toán trên số phức, phương trình bậc hai, cực trị số phức và nhiều dạng bài tập khác. Tất cả các chuyên đề trong tài liệu được chia thành 2 phần: phần lý thuyết và phần trắc nghiệm. Phần lý thuyết giúp các em hiểu rõ lý thuyết cần thiết, còn phần trắc nghiệm giúp các em ôn tập và kiểm tra kiến thức của mình. Đây thực sự là một tài liệu hữu ích không chỉ cho việc ôn thi THPT Quốc gia mà còn để nắm vững kiến thức giải tích lớp 12. Hy vọng rằng tài liệu sẽ giúp các em đạt được kết quả tốt trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Tài liệu ôn tập lý thuyết thi tốt nghiệp Trung học Phổ thông môn Toán
Tài liệu gồm 21 trang, được biên soạn bởi thầy giáo Huỳnh Phú Sĩ, hướng dẫn học sinh lớp 12 ôn tập lý thuyết để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : Chủ đề 1 . Khảo sát sự biến thiên và đồ thị của hàm số 2. 1. Sự biến thiên của hàm số 2. 2. Cực trị của hàm số 2. 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3. 4. Đường tiệm cận 3. 5. Khảo sát đồ thị hàm số 3. Chủ đề 2 . Lũy thừa – Mũ – Logarit 6. 1. Lũy thừa 6. 2. Hàm số lũy thừa 7. 3. Logarit 7. 4. Hàm số mũ và hàm số logarit 8. 5. Phương trình mũ và phương trình logarit 9. 6. Bất phương trình mũ và bất phương trình logarit 9. Chủ đề 3 . Nguyên hàm – Tích phân và ứng dụng 10. 1. Nguyên hàm 10. 2. Tích phân 10. 3. Ứng dụng của tích phân trong hình học 11. Chủ đề 4 . Số phức 12. 1. Số phức 12. 2. Phép cộng, trừ, nhân, chia số phức 12. Chủ đề 5 . Khối đa diện 13. 1. Khái niệm về hình đa diện và khối đa diện 13. 2. Khối đa diện đều 13. 3. Thể tích khối đa diện 13. Chủ đề 6 . Khối tròn xoay 14. 1. Hình nón và hình trụ 14. 2. Hình cầu 14. Chủ đề 7 . Phương pháp tọa độ trong không gian 16. 1. Hệ tọa độ Oxyz 16. 2. Phương trình mặt cầu 17. 3. Phương trình mặt phẳng 17. 4. Phương trình đường thẳng 18. Chủ đề 8 . Dãy số – Quy tắc đếm – Xác suất – Góc – Khoảng cách 19. 1. Dãy số 19. 2. Quy tắc đếm 19. 3. Xác suất 20. 4. Góc và Khoảng cách trong không gian.
Làm ngược và loại trừ trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn sử dụng phương pháp làm ngược và loại trừ trong giải toán trắc nghiệm. 1. “Làm ngược”: Từ đáp án, kiểm tra các điều kiện của bài toán để xác thực tính đúng – sai: Ta cần chú ý rằng, các đáp án cũng chính là giả thiết của bài toán, gợi ý giúp ta giải quyết bài toán trắc nghiệm. 2. “Loại trừ”: Từ giả thiết, bóc tách ra các điều kiện độc lập, kiểm tra các đáp án vi phạm điều kiện để loại trừ. Đối với câu hỏi có chọn lựa phương án đúng, đáp án nào vi phạm điều kiện bài toán, sẽ bị loại trừ. Nếu câu hỏi trắc nghiệm có bốn đáp án, mà trong đó có một đáp án đúng, chúng ta xác định được ba trong bốn đáp án đã cho là sai thì đáp án đúng là đáp án còn lại. Xem thêm : + Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm – Trần Tuấn Anh + Phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh