Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 chuyên đề phát triển bám sát đề tham khảo TN THPT 2024 môn Toán

Tài liệu gồm 438 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tuyển tập 50 chuyên đề phát triển bám sát đề tham khảo tốt nghiệp THPT năm 2024 môn Toán. MỤC LỤC : Dạng 1: Tìm giá trị cực đại, cực tiểu của hàm số thông qua bảng biến thiên. Dạng 2: Tìm nguyên hàm của hàm số cơ bản. Dạng 3: Tìm tập nghiệm của phương trình logarit cơ bản. Dạng 4: Tìm tọa độ vectơ đơn giản khi biết tọa độ điểm. Dạng 5: Tìm tiệm cận ngang của đồ thị hàm số hữu tỷ b1/b1. Dạng 6: Tìm hàm số khi biết bảng biến thiên. Dạng 8: Tìm vectơ chỉ phương của đường thẳng. Dạng 9: Tìm số phức khi biết điểm biểu diễn trên mp tọa độ. Dạng 10: Tìm phương trình mặt cầu khi biết tọa độ tâm và bán kính cụ thể. Dạng 11: Thu gọn biểu thức logarit cho trước. Dạng 12: Tìm khoảng đồng biến, nghịch biến của hàm số khi biết đồ thị hàm số. Dạng 13: Tìm thể tích khối lăng trụ khi biết diện tích đáy và chiều cao. Dạng 14: Tìm tập nghiệm của BPT mũ cơ bản. Dạng 15: Xét sự biến thiên của hàm số mũ và logarit. Dạng 16: Tìm tọa độ vectơ pháp tuyến của mặt phẳng cơ bản cho trước. Dạng 17: Tìm điểm cực trị của hàm số khi biết đạo hàm y’. Dạng 18: Tính tích phân của hàm số cơ bản sử dụng tính chất. Dạng 19: Tính tích phân cơ bản sử dụng định nghĩa và tính chất. Dạng 20: Tính thể tích khối chóp khi biết diện tích đáy và chiều cao. Dạng 21: Tìm tổng hai số phức. Dạng 22: Xác định các yếu tố liên qua đến hình nón. Dạng 23: Bài toán sử dụng hoán vị, chỉnh hợp, tổ hợp cơ bản. Dạng 24: Tìm nguyên hàm của hàm số mũ cơ bản. Dạng 25: Bài toán tương giao của hai đồ thị. Dạng 26: Tìm các yếu tố liên quan đến hình trụ. Dạng 27: Tìm các yếu tố liên quan đến cấp số cộng. Dạng 28: Tìm phần thực, phần ảo của số phức đơn giản. Dạng 29: Tìm phần thực, phần ảo của số phức có liên quan đến số phức cho trước. Dạng 30: Tìm góc của hai đường thẳng (hình học không gian 11). Dạng 31: Tìm khoảng cách điểm A đến mặt phẳng (hình học không gian 11). Dạng 32: Tìm khoảng đồng biến, nghịch biến khi biết đạo hàm y’. Dạng 33: Tìm xác suất dùng định nghĩa. Dạng 34: Tính tích phân sử dụng tính chất và định nghĩa. Dạng 35: Tính GTLN – GTNN của hàm số. Dạng 36: Biến đổi biểu thức logarit. Dạng 37: Tìm phương trình mặt cầu có tâm và đi qua một điểm cho trước. Dạng 38: Viết PTĐT đi qua một điểm và song song với một đường thẳng cho trước. Dạng 39: Tính giá trị của biểu thức logarit thỏa ĐK cho trước. Dạng 40: Tìm số giá trị tham số m nguyên để hàm số đơn điệu trên khoảng cho trước. Dạng 41: Tính tích phân của hàm số khi biết diện tích hình phẳng tạo bởi các đồ thị hàm số. Dạng 42: Tìm modun của tổng hai số phức thỏa các điều kiện cho trước. Dạng 43: Tính thể tích lăng trụ biết yếu tố về góc cho trước. Dạng 44: Tìm phương trình mặt phẳng thỏa mãn các điều kiện cho trước. Dạng 45: Tính thể tích khối trụ – ứng dụng thực tế. Dạng 46: Tìm GTLN – GTNN của hàm số logarit. Dạng 47: Tìm GTLN – GTNN của modun tổng, hiệu các số phức thỏa ĐK cho trước. Dạng 48: Tính thể tích của vật thể (ứng dụng tích phân vào thực tế). Dạng 49: Tìm giá trị nguyên của tham số m liên qua đến đạo hàm và hàm số hợp. Dạng 50: Bài toán liên quan đến ứng dụng để tìm cực trị hình học trong KG Oxyz.

Nguồn: toanmath.com

Đọc Sách

Phát triển 16 dạng toán trọng tâm đề tham khảo TN THPT 2023 môn Toán
Tài liệu gồm 545 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, phát triển 16 dạng toán trọng tâm, mức độ vận dụng – vận dụng cao (VD – VDC), từ câu 35 đến câu 50 trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán của Bộ Giáo dục và Đào tạo. + Dạng 1 Tập Hợp Điểm Biểu Diễn Số Phức. + Dạng 2 Viết Phương Trình Đường Thẳng Đi Qua Hai Điểm. + Dạng 3 Tìm Tọa Độ Điểm Liên Quan Đến Mặt Phẳng. + Dạng 4 Khoảng Cách Trong Không Gian. + Dạng 5 Bất Phương Trình Logarit. + Dạng 6 Tính Tích Phân. + Dạng 7 Cực Trị Của Hàm Số. + Dạng 8 Cực Trị Số Phức. + Dạng 9 Thể Tích Khối Đa Diện Khi Biết Yếu Tố Khoảng Cách. + Dạng 10 Ứng Dụng Tích Phân Tính Diện Tích Hình Phẳng. + Dạng 11 Phương Trình Bậc Hai Số Phức. + Dạng 12 Khoảng Cách Trong Hệ Tọa Độ Oxyz. + Dạng 13 Tìm Cặp Số Nguyên Liên Quan Đến Bất Phương Trình Logarit. + Dạng 14 Tính Khoảng Cách Liên Quan Đến Mặt Nón. + Dạng 15 Cực Trị Trong Không Gian Oxyz. + Dạng 16 Tính Đơn Điệu Hàm Số Chứa Giá Trị Tuyệt Đối. Trong mỗi dạng toán đều bao gồm các phần: Kiến Thức Cần Nhớ; Bài Tập Trong Đề Minh Họa; Bài Tập Tương Tự Và Phát Triển; có đáp án và lời giải chi tiết.
Chuyên đề phát triển VD - VDC đề tham khảo thi TN THPT 2023 môn Toán
Tài liệu gồm 529 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập các chuyên đề phát triển bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn Chuyên đề phát triển VD – VDC đề tham khảo thi TN THPT 2023 môn Toán : + Có bao nhiêu giá trị nguyên của tham số m để hàm số 4 2 y x x mx 6 có ba điểm cực trị? Lời giải: Chọn B. Ta có: 3 y x x m 4 12. Xét phương trình 3 y x x m 0 4 12 0 1. Để hàm số có ba điểm cực trị thì phương trình 1 phải có 3 nghiệm phân biệt. Ta có: 3 1 4 12 m x x. Xét hàm số 3 g x x x 4 12 có 2 g x x 12 12. Cho 2 g x x 12 12 0 1. Bảng biến thiên của g x. Dựa vào bảng biến thiên ta thấy, phương trình 1 có 3 nghiệm phân biệt khi 8 8 m. Do m 6 5. Vậy có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài. + Gọi H là hình chiếu của S lên đáy I J K là hình chiếu của S lên AC CB BA. Dễ dàng chứng minh được góc giữa các mặt bên và đáy là các góc SIH SJH SKH và các tam giác vuông SHI SHJ SHK bằng nhau nên HI HJ HK. Do đó H là tâm đường tròn nội tiếp của tam giác ABC. Ta có: 0 AC AB a BC tan 60 3 2a. Nên diện tích và nửa chu vi của tam giác ABC lần lượt là: 2 2 a a AB AC BC S AB. Suy ra bán kính đường tròn nội tiếp của tam giác ABC là: 2 a S r HK p. Đường cao của khối chóp SABC là 3 3 tan 60 2 a SH HK. Vậy thể tích khối chóp đã cho là? + Cho hàm số 1 3 2 2 4 3 y f x x x mx. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 2023 2023 để hàm số y f x 4 nghịch biến trên khoảng 03? Lời giải: Ta có: y f x f x. Đặt t x 4 với x t x 1. Do đó, hàm số y f x 4 nghịch biến trên khoảng 03 khi và chỉ khi hàm số y f t nghịch biến trên khoảng 4 1. Mặt khác y f t là hàm số chẵn, có đồ thị đối xứng qua trục tung. Suy ra hàm số y f t nghịch biến trên khoảng 4 1 khi hàm số y f t đồng biến trên 14 tương ứng với hàm số y f t đồng biến trên 14. Do m và m 2023 2023 nên có 2023 giá trị nguyên của m thỏa mãn bài toán.
Phân tích đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán
Tài liệu gồm 87 trang, được biên soạn bởi quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: Trần Ngọc Hùng, Ngụy Như Thái, Quảng Đại Hạn, Quảng Đại Phước, Đàng Xuân Phi, Quảng Đại Mưa, Nguyễn Văn Hồng, hướng dẫn phân tích chi tiết đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán. Dạng 1: Bài toán chỉ sử dụng P hoặc C hoặc A. Dạng 2: Tính xác suất bằng định nghĩa. Dạng 3: Tìm hạng tử trong cấp số nhân. Dạng 4: Xác định góc giữa hai mặt phẳng, đường và mặt. Dạng 5: Khoảng cách từ một điểm đến một mặt phẳng. Dạng 6: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng 7: Tìm cực trị dựa vào BBT, đồ thị. Dạng 8: Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng 9: Nhận dạng đồ thị, bảng biến thiên. Dạng 10: Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng 11: Xét tính đơn điệu của hàm số cho bởi công thức. Dạng 12: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 13: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 14: Câu hỏi lý thuyết. Dạng 15: Đạo hàm hàm số lũy thừa. Dạng 16: Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng 17: Bất phương trình cơ bản. Dạng 18: Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng 19: Phương pháp đặt ẩn phụ. Dạng 20: Phương pháp đưa về cùng cơ số. Dạng 21: Phương pháp đưa về cùng cơ số. Dạng 22: Phương pháp hàm số, đánh giá. Dạng 23: Định nghĩa, tính chất và tích phân cơ bản. Dạng 24: Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng 25: Định nghĩa, tính chất và tích phân cơ bản. Dạng 26: Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng 27: Phương pháp đổi biến số. Dạng 28: Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng 29: Xác định các yếu tố cơ bản của số phức. Dạng 30: Biểu diễn hình học cơ bản của số phức. Dạng 31: Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng 32: Bài toán tập hợp điểm. Dạng 33: Định lí Viet và ứng dụng. Dạng 34: Phương pháp đại số. Dạng 35: Tính thể tích các khối đa diện. Dạng 36: Các bài toán khác (góc, khoảng cách) liên quan đến thể tích khối đa diện. Dạng 37: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 38: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 39: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 40: Xác định VTPT. Dạng 41: Góc. Dạng 42: Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng 43: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 44: Viết phương trình đường thẳng. Dạng 45: Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 46: Các bài toán cực trị. Dạng 47: Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng.
Tuyển tập VD - VDC trong các đề thi thử THPT QG môn Toán - Trương Công Đạt
Tài liệu gồm 79 trang, được biên soạn bởi thầy giáo Trương Công Đạt, tuyển tập 420 câu vận dụng – vận dụng cao (VD – VDC) trong các đề thi thử tốt nghiệp THPT Quốc gia môn Toán, giúp học sinh lớp 12 rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT, kỳ thi xét tuyển vào Đại học – Cao đẳng. Mục lục : CHƯƠNG I. HÀM SỐ 2. A. CÂU HỎI 3. B. ĐÁP ÁN TRẮC NGHIỆM 37. CHƯƠNG II. NGUYÊN HÀM – TÍCH PHÂN 38. A. CÂU HỎI 39. B. ĐÁP ÁN TRẮC NGHIỆM 53. CHƯƠNG III. HÌNH HỌC KHÔNG GIAN 54. A. CÂU HỎI 55. B. ĐÁP ÁN TRẮC NGHIỆM 68. CHƯƠNG IV. SỐ PHỨC 69. A. CÂU HỎI 70. B. ĐÁP ÁN TRẮC NGHIỆM 79.