Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hậu Lộc Thanh Hóa

Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hậu Lộc Thanh Hóa Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 7 năm 2022-2023 phòng GD&ĐT Hậu Lộc - Thanh Hóa Đề học sinh giỏi Toán lớp 7 năm 2022-2023 phòng GD&ĐT Hậu Lộc - Thanh Hóa Chào mừng quý thầy cô và các em học sinh lớp 7! Sytu hân hạnh giới thiệu đến các bạn đề khảo sát chất lượng học sinh giỏi môn Toán lớp 7 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 25 tháng 02 năm 2023. Dưới đây là một số câu hỏi trong đề thi: - Số A được chia thành ba phần tỉ lệ theo. Biết tổng các bình phương của ba số đó bằng 24309. Hãy tìm số A. - Cho a, b, c, d là các số nguyên thỏa mãn a2 = b2 + c2 + d2. Chứng minh rằng: abcd + 2023 có thể viết được dưới dạng hiệu của hai số chính phương. - Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE và EIB = 60. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh: AMN đều. c) Chứng minh rằng: IA là phân giác của góc DIE. Hy vọng rằng đề thi sẽ giúp các em học sinh lớp 7 rèn luyện và phát triển khả năng giải quyết vấn đề, suy luận logic và tự tin trong môn Toán. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 7 năm 2018 - 2019 phòng GDĐT Đông Hưng - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT Đông Hưng – Thái Bình : + Cho tam giác ABC có góc A tù. Kẽ AD AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM DE. + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Không dùng máy tính, hãy tính giá trị của biểu thức S.
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 - 2019 quận Đống Đa - Hà Nội
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 – 2019 cụm trường THCS quận Đống Đa – Hà Nội gồm 01 trang với 4 câu tự luận, đề nhằm giao lưu và tuyển chọn các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội để tuyên dương, khen thưởng, thúc đẩy nâng cao chất lượng môn Toán 7.
Đề thi Olympic Toán 7 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. a) Chứng minh rằng: MC = BN và BN CM. b) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN. + Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Tính số đo AMB? + Cho biết (x – 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.