Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2017 2018 trường THPT Đức Thọ Hà Tĩnh

Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2017 2018 trường THPT Đức Thọ Hà Tĩnh Bản PDF Đề thi học kỳ 2 Toán lớp 11 năm 2017 – 2018 trường THPT Đức Thọ – Hà Tĩnh gồm 30 trang với 30 câu hỏi trắc nghiệm khách quan và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán lớp 11 năm 2017 – 2018 : + Cho một tam giác đều ABC cạnh a. Tam giác A1B1C1 có đỉnh là trung điểm các cạnh của tam giác ABC, tam giác A2B2C2 có các đỉnh là trung điểm các cạnh của tam giác A1B1C1, … tam giác AnBnCn có các đỉnh là trung điểm các cạnh của tam giác An-1Bn-1Cn-1 ….. Gọi P, P1, P2, … Pn, … là chu vi của các tam giác ABC, A1B1C1, A2B2C2, … AnBnCn, … . Tìm tổng P + P1 + P2 + … + Pn + … . [ads] + Một trường THPT có 4 học sinh giỏi toán là nam, 5 học sinh giỏi văn là nam và 3 học sinh giỏi văn là nữ. Cần chọn 3 em đi dự đại hội ở Tỉnh. Tính xác suất để trong 3 em được chọn có cả nam lẫn nữ, có cả học sinh giỏi toán và học sinh giỏi văn. + Góc giữa hai đường thẳng bất kỳ trong không gian là góc giữa: A. Hai đường thẳng cắt nhau và không song song với chúng. B. Hai đường thẳng lần lượt vuông góc với chúng. C. Hai đường thẳng cùng đi qua một điểm và lần lượt song song với chúng. D. Hai đường thẳng cắt nhau và lần lượt vuông góc với chúng. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Nguyễn Công Trứ - TP HCM
Ngày … tháng 04 năm 2021, trường THPT Nguyễn Công Trứ, quận Gò Vấp, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán 11 giai đoạn cuối học kỳ 2 năm học 2020 – 2021. Đề thi HK2 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang, đề được biên soạn theo dạng tự luận với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) và ABCD là hình thang vuông tại A, B. Biết AB = BC = a, AD 2a SA a 2. Gọi K là trung điểm của AD. a) Chứng minh: BK (SAC), (SBC) (SAB). b) Chứng minh tam giác SCD vuông tại C. c) Xác định và tính góc giữa (SCD) và (ABCD). d) Tính khoảng cách từ điểm K đến (SCD). + Cho đồ thị hàm số 3 (C) y f (x) 2x 7x 1. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng (d): y = – x + 5. + Cho y 4sin x 3cosx 5 x . Chứng minh rằng: 0 y 10 với mọi giá trị của x.
Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Mạc Đĩnh Chi - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán 11 năm học 2020 – 2021 trường THPT Mạc Đĩnh Chi, quận 6, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Nguyễn Thượng Hiền - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán 11 năm học 2020 – 2021 trường THPT Nguyễn Thượng Hiền, quận Tân Bình, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Phan Đình Phùng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán 11 năm học 2020 – 2021 trường THPT Phan Đình Phùng – Hà Nội; đề thi mã đề 123 gồm 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút; đề thi có đáp án và lời giải chi tiết mã đề 123, 246, 357, 479. Trích dẫn đề thi HK2 Toán 11 năm 2020 – 2021 trường THPT Phan Đình Phùng – Hà Nội : + Cho đường thẳng a không vuông góc với mặt phẳng (P). Khi đó, góc giữa đường thẳng a và mặt phẳng (P) là góc giữa? A. a và hình chiếu vuông góc của a lên (P). B. a và một đường thẳng bất kì cắt (P). C. a và đường vuông góc với (P). D. a và đường thẳng bất kì nằm trong (P). + Tìm mệnh đề sai trong các mệnh đề sau? A. Hình hộp là hình lăng trụ. B. Hình hộp chữ nhật là hình lăng trụ đứng. C. Có hình lăng trụ không phải là hình hộp. D. Hình lăng trụ là hình hộp. + Cho phương trình 4 2 2 5 10 x xx. Khẳng định nào sau đây là đúng? A. Phương trình đã cho không có nghiệm trong khoảng (−2;0). B. Phương trình đã cho không có nghiệm trong khoảng (−1;1). C. Phương trình đã cho chỉ có một nghiệm trong khoảng (−2;1). D. Phương trình đã cho có ít nhất một nghiệm trong khoảng (0;2).