Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán trường THCS Giảng Võ - Hà Nội

Thứ Năm ngày 28 tháng 05 năm 2020, trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Đề thi thử vào lớp 10 môn Toán trường THCS Giảng Võ – Hà Nội gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử vào lớp 10 môn Toán trường THCS Giảng Võ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tại hội khỏe phù đổng của thành phố Hà Nội, có 56 đội bóng đã đăng ký tham gia. Lúc đầu ban tổ chức dự kiến chia 56 đội thành các bảng đấu với số đội ở mỗi bảng bằng nhau. Tuy nhiên, đến ngày bốc thăm chia bảng thì có 1 đội không tham dự được, vì vậy ban tổ chức quyết định tăng thêm ở mỗi bảng 1 đội, do đó tổng số bảng đấu giảm đi 3 bảng. Hỏi số bảng dự kiến lúc đầu là bao nhiêu? [ads] + Người ta thả một quả trứng vào cốc thủy tinh hình trụ có chứa nước, trứng chìm hoàn toàn xuống đáy cốc và nằm ngang, chứng tỏ qua trứng đó còn tươi (được đẻ từ 1 đến 2 ngày). Em hãy tính thể tích quả trứng đó biết diện tích đáy của cột nước hình trụ là 16,7 cm2 và nước trong cốc dâng thêm 8,2 mm. + Cho tứ giác ABCD nội tiếp (O) đường kính AD, gọi E là giao điểm của AC và BD. Kẻ EF vuông góc với AD tại F. a. Chứng minh tứ giác ABEF nội tiếp được đường tròn. b. Chứng minh CA là tia phân giác của góc BCF. c. Đường tròn ngoại tiếp ABFC cắt BD ở M, gọi N là giao điểm của FC và BD. Chứng minh OM // AC và FM là tiếp tuyến của đường tròn ngoại tiếp ABFN.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; đề thi gồm 02 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian giám thị coi thi phát đề); kỳ thi được diễn ra vào sáng thứ Năm ngày 09 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Bác An thuê nhà với giá 1500000 đồng/tháng, bác phải trả tiền dịch vụ giới thiệu là 500000 đồng (tiền dịch vụ chi trả một lần). Gọi x (tháng) là thời gian mà bác An thuê nhà, y (đồng) là tổng số tiền bác phải trả bao gồm tiền thuê nhà trong x (tháng) và tiền dịch vụ giới thiệu. a) Lập công thức tính y theo x. b) Tính tổng số tiền bác An phải trả sau khi thuê nhà 5 tháng. + Bài toán có nội dung thực tế: Một người dự định trồng 210 cây theo thời gian định trước. Nhưng do thời tiết xấu nên thực tế mỗi ngày người đó trồng được ít hơn dự định 5 cây, vì thế hoàn thành công việc chậm mất 7 ngày so với dự kiến. Hỏi theo dự định ban đầu, mỗi ngày người đó trồng được bao nhiêu cây? + Để có một chiếc thùng hình trụ bằng tôn không nắp có đường kính đáy là 40 cm và chiều cao là 60 cm thì cần dùng tối thiểu bao nhiêu mét vuông tôn? (coi lượng tôn dùng để viền mép thùng thông đáng kể; lấy pi = 3,14, kết quả làm tròn đến chữ số thập phân thứ 2).
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cần Thơ : + Trong mặt phẳng Oxy, cho parabol (P): y = 1/2.x2 và đường thẳng (d): y = (m + 2)x – m + 2. Tìm tất cả giá trị của tham số m sao cho đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) cùng nằm bên phải trục tung. + Hưởng ứng phong trào “Xanh hóa trường học”, lớp 9A và lớp 9B được nhà trường giao chỉ tiêu trồng 80 cây xanh xung quanh sân vườn của trường. Nếu lớp 9A trồng trong 2 giờ và lớp 9B trồng trong 1 giờ thì được 25 cây. Nếu lớp 9A trồng trong 1 giờ và lớp 9B trồng trong 2 giờ thì được 23 cây. Hỏi nếu cả hai lớp cùng trồng với nhau thì sau bao lâu hoàn thành chỉ tiêu được giao? Biết rằng, mỗi giờ số cây trồng được của mỗi lớp là không đổi. + Cho tam giác ABC nhọn (AB < AC). Gọi M và N lần lượt là trung điểm của AB và AC. Dựng bên ngoài tam giác ABC các tam giác đều ANI và BMK. Gọi điểm D là hình chiếu vuông góc của điểm A lên cạnh BC, điểm E là trung điểm của đoạn thẳng IK. a) Chứng minh tứ giác AKBD nội tiếp. b) Chứng minh điểm E là tâm đường tròn ngoại tiếp tam giác IKD. c) Tính số đo của NEM.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào sáng thứ Năm ngày 09 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một xưởng may phải may 280 bộ quần áo. Khi thực hiện, mỗi ngày xưởng may được nhiều hơn 5 bộ quần áo so với số bộ phải may trong một ngày theo kế hoạch. Vì thế xưởng đã hoàn thành công việc sớm một ngày so với kế hoạch. Hỏi theo kế hoạch ban đầu, mỗi ngày xưởng phải may bao nhiêu bộ quần áo? + Một hình nón có bán kính đáy r = 3cm và đường cao h = 4cm. Tính thể tích của hình nón (lấy pi = 3,14). + Cho đường tròn tâm O, đường kính AB. Điểm C nằm trên đường tròn sao cho CA > CB. Từ điểm O vẽ đường thẳng vuông góc với đường thẳng AC, đường thẳng này cắt tiếp tuyến tại A của đường tròn tâm O tại điểm M và cắt đường thẳng AC tại điểm I. Đường thẳng MB cắt đường tròn tâm O tại điểm thứ hai Q (Q khác B). a) Chứng minh tứ giác AlQM là tứ giác nội tiếp. b) Chứng minh rằng MQ.MB = MO.MI.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Sơn La, tỉnh Sơn La; đề thi dành cho thí sinh thi vào các lớp 10 chuyên Toán và chuyên Tin học; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Sơn La : + Tìm giá trị của tham số k để đường thẳng (d1): y = -x + 2 cắt đường thẳng (d2): y = 2x + 3 – k tại một điểm nằm trên trục hoành. + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx – m + 1 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn |x1 – x2| > 3. + Cho tam giác ABC có ba góc nhọn (AB > AC) nội tiếp đường tròn (O; R). Đường cao AH của tam giác ABC cắt đường tròn (O; R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M. a) Chứng minh tứ giác BMHD nội tiếp được đường tròn và DA là tia phân giác của góc MDC. b) Từ D kẻ DN vuông góc với đường thẳng AC tại N. Chứng minh ba điểm M, H, N thẳng hàng. c) Cho P = AB2 + AC2 + CD2 + BD2. Tính giá trị biểu thức P theo R.