Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 11 năm 2023 - 2024 sở GDĐT Quảng Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2023 – 2024 và chọn đội dự tuyển dự thi chọn học sinh giỏi Quốc gia môn Toán năm học 2024 – 2025 sở Giáo dục và Đào tạo tỉnh Quảng Bình; đề thi gồm bài thi thứ nhất và bài thi thứ hai, có đáp án và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024. Trích dẫn Đề thi chọn học sinh giỏi Toán 11 năm 2023 – 2024 sở GD&ĐT Quảng Bình : + Một mật khẩu thẻ của ngân hàng X là một dãy gồm 6 chữ số. a) Có bao nhiêu mật khẩu thẻ của ngân hàng X có 6 chữ số khác nhau trong đó có chữ số 6 và chữ số 8. b) Tính số mật khẩu thẻ của ngân hàng X có tổng 6 chữ số bằng 16. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi C’ là trung điểm của SC, M là điểm thuộc cạnh SA, điểm N di động trên cạnh đáy BC (N khác B C). a) Gọi 1 2 G G lần lượt là trọng tâm các tam giác ∆ABC và ∆SBC. Chứng minh rằng G G1 2 song song với mặt phẳng (SAB). b) Mặt phẳng (α) chứa CM’ cắt các cạnh SB SD lần lượt tại B D. Xác định vị trí của điểm M để 2024 SB SD SB SD. c) Mặt phẳng (β) đi qua N đồng thời song song với hai đường thẳng SB và AC. Xác định đa giác tạo bởi giao tuyến của mặt phẳng (β) với các mặt của hình chóp S.ABCD và tìm vị trí của điểm N để đa giác đó có diện tích lớn nhất. + Cho đa giác lồi n đỉnh (4) n. Ta kẻ tất cả các đường chéo. Biết rằng không có 3 đường chéo nào đồng quy tại một điểm thuộc miền trong của đa giác đã cho. Tính số miền đa giác được tạo thành bên trong của đa giác lồi đó (ta chỉ tính các đa giác mà bên trong nó không có điểm nào thuộc đường chéo của đa giác ban đầu).

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 11 cấp trường năm 2020 - 2021 trường Liễn Sơn - Vĩnh Phúc
Đề thi HSG Toán 11 cấp trường năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc dành cho học sinh THPT không chuyên, đề gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 11 cấp trường năm 2020 – 2021 trường Liễn Sơn – Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho SM = 1/3.SB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD. + Xung quanh bờ ao của gia đình bác Nam trồng 20 cây chuối. Do không còn phù hợp bác muốn thay thế để trồng bưởi, lần đầu bác chặt ngẫu nhiên 4 cây. Tính xác suất để trong 4 cây bác Nam chặt không có hai cây nào gần nhau. + Cho a, b, c là độ dài 3 cạnh của một tam giác có chu vi bẳng 1. Tìm giá trị lớn nhất của biểu thức T.
Đề thi học sinh giỏi tỉnh Toán 11 năm 2020 - 2021 sở GDĐT Hà Tĩnh
Đề thi học sinh giỏi tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi tỉnh Toán 11 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Một chuồng có 3 con thỏ trắng và 4 con thỏ xám. Người ta bắt ngẫu nhiên lần lượt từng con ra khỏi chuồng cho đến khi bắt được cả 3 thỏ trắng thì mới dừng lại. Tính xác suất để người đó phải bắt ít nhất 5 lần. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC). Gọi M là trung điểm SB, N là điểm thỏa mãn NS + 2NC = 0. Tính độ dài SA biết AN vuông góc với CM. + Cho hình lăng trụ ABC.A’B’C’. Gọi I là trung điểm B’C’ và M là điểm thuộc cạnh A’C’. Biết AM cắt A’C tại P, B’M cắt A’I tại Q. Tìm vị trí điểm M trên cạnh A’C’ sao cho diện tích tam giác A’PQ ‘ bằng 2/9 diện tích tam giác A’CI.
Đề thi HSG cấp trường Toán 11 năm 2020 - 2021 trường Cẩm Xuyên - Hà Tĩnh
Ngày … tháng 01 năm 2021, trường THPT Cẩm Xuyên, tỉnh Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2020 – 2021. Đề thi HSG cấp trường Toán 11 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG cấp trường Toán 11 năm 2020 – 2021 trường Cẩm Xuyên – Hà Tĩnh : + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là trung điểm của SB. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. + Cho hai đường thẳng song song d1, d2. Trên d1 lấy 6 điểm phân biệt và trên d2 lấy 8 điểm phân biệt. Hỏi từ 14 điểm đã cho tạo được bao nhiêu tam giác? + Tìm m để phương trình: sin 3x – 2sin 2x + (5 – 4m)sin x = 0 có đúng ba nghiệm thuộc khoảng (-π/2;π).
Đề thi chọn HSG Toán 11 vòng 1 năm học 2020 - 2021 sở GDĐT Bình Dương
Ngày 17 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi chọn đội tuyển học sinh giỏi dự thi Quốc gia môn Toán lớp 11 vòng 1 năm học 2020 – 2021. Đề thi chọn HSG Toán 11 vòng 1 năm học 2020 – 2021 sở GD&ĐT Bình Dương gồm 02 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề thi chọn HSG Toán 11 vòng 1 năm học 2020 – 2021 sở GD&ĐT Bình Dương : + Có 5 con xúc xắc được đánh số thứ tự 1, 2, 3, 4, 5. Gieo đồng thời cả 5 xúc xắc đó. Tính xác suất để tổng của 5 số trên mặt xuất hiện của 5 xúc xắc bằng 14. + Cho tam giác ABC nội tiếp đường tròn (O), AB < AC, M là trung điểm của cạnh BC. Đường phân giác trong của BAC cắt cạnh BC tại D và cắt đường tròn (O) tại điểm P (khác A). Gọi E là điểm đối xứng với D qua M; trên đường thẳng AO và đường thẳng AD lần lượt lấy các điểm H, F sao cho các đường thẳng HD, FE cùng vuông góc với đường thẳng BC. a) Chứng minh rằng bốn điểm B, H, C, F cùng nằm trên một đường tròn (w). b) Gọi T là giao điểm khác F của AD và (w). Biết đường tròn ngoại tiếp tam giác MTP cắt đường thẳng TH tại điểm Q (khác T). Chứng minh rằng đường thẳng QA tiếp xúc với đường tròn (O). + Với 4 số thực dương a, b, c, d thỏa mãn a + b + 1 = 7c ta xét hai đa thức P(x) = x^3 + ax^2 + bx + c và Q(x) = x^2 + 2x + d. Giả sử P(x) = 0 có 3 nghiệm thực (không nhất thiết phân biệt). Chứng minh rằng tích 3 nghiệm của P(x) không vượt quá -1 và P(Q(x)) = 0 có tối đa 4 nghiệm thực phân biệt.