Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình

Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Đề tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GD ĐT Ninh Bình Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Ninh Bình. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: Tìm tất cả các số nguyên dương $a$ và các số nguyên tố $p$ thỏa mãn $a^2 = 7p^4 + 9$. Cho tam giác $ABC$ (với $AB < AC$) nội tiếp đường tròn $(O)$. Gọi $M$, $N$ lần lượt là trung điểm của các cạnh $AB$, $AC$. Đường thẳng $MN$ cắt $(O)$ tại các điểm $P$, $Q$ ($P$ thuộc cung nhỏ $AB$ và $Q$ thuộc cung nhỏ $AC$). Lấy điểm $D$ trên cạnh $BC$ ($D$ khác $B$ và $D$ khác $C$). Đường tròn ngoại tiếp tam giác $BDP$ cắt $AB$ tại điểm $I$ ($I$ khác $B$). Đường thẳng $DI$ cắt $AC$ tại $K$. Chứng minh rằng tứ giác $AIPK$ nội tiếp. Chứng minh rằng $\frac{PK}{PD} = \frac{QB}{QA}$. Đường thẳng $CP$ cắt đường tròn ngoại tiếp tam giác $BDP$ tại $G$ ($G$ khác $P$). Đường thằng $IG$ cắt đường thẳng $BC$ tại điểm $E$. Chứng minh rằng khi điểm $D$ di chuyển trên cạnh $BC$ thì tỉ số $\frac{CD}{CE}$ không đổi. Cho bảng ô vuông $3 \times 3$ gồm ba dòng và ba cột. Người ta ghi tất cả các số thuộc tập hợp $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ vào các ô vuông của bảng, sao cho tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$ đều bằng nhau. Hãy chỉ ra một cách ghi các số vào bảng thỏa mãn yêu cầu bài toán. Trong tất cả các cách ghi các số vào bảng thỏa mãn yêu cầu bài toán, tìm giá trị lớn nhất của tổng các số trong mỗi bảng vuông con cỡ $2 \times 2$. Hy vọng các em sẽ ôn tập và làm bài thi tốt! Chúc quý thầy cô giáo và các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Hà Nam (chuyên)
Đề tuyển sinh 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam (chuyên) dành cho thí sinh thi vào các lớp chuyên Toán tại các trường THPT chuyên thuộc sở Giáo dục và Đào tạo tỉnh Hà Nam. Trích dẫn đề tuyển sinh 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam (chuyên) : + Giải hệ phương trình. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AH. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi A’ là điểm đối xứng với A qua O. Đường thẳng MA’ cắt các đường thẳng AH, BC theo thứ tự tại N và K. Gọi L là giao điểm của MA và BC. Đường thẳng A’I cắt đường tròn (O) tại điểm thứ hai D. Hai đường thẳng AD và BC cắt nhau tại điểm S. [ads] 1. Chứng minh tam giác ANA’ là tam giác cân và MA’.MK = ML.MA. 2. Chứng minh MI^2 = ML.MA và tứ giác NHIK là tứ giác nội tiếp. 3. Gọi I là trung điểm của cạnh SA, chứng minh ba điểm T, I, K thẳng hàng. 4. Chứng minh nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn 2^x – y^2 + 4y + 61 = 0.
Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - BR VT
Đề thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 trường THPT chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào ngày 15 tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – BR VT : + Cho đa thức P(x) = (x – 2)(x + 4)(x^2 + ax – 8) + bx^2 với a và b là các số thực thỏa mãn a + b < 1. Chứng minh rằng phương trình P(x) = 0 có bốn nghiệm phân biệt. + Cho đường tròn (O) có đường kính AB. Từ điểm S thuộc tia đối của tia AB kẻ đến (O) hai tiếp tuyến SC và SD (C và D là hai tiếp điểm). Gọi H là giao điểm của đường kính AB và dây CD. Vẽ đường tròn (O) đi qua C và tiếp xúc với đường thẳng AB tại S. Hai đường tròn (O) và (O’) cắt nhau tại điểm M khác C. a) Chứng minh tứ giác SMHD nội tiếp. [ads] b) Gọi K là hình chiếu vuông góc của C trên BD, I là giao điểm của BM và CK. Chứng minh HI song song với BD. c) Các đường thẳng SM và HM lần lượt cắt (O) tại các điểm L và T (L và T khác M). Chứng minh rằng tứ giác CDTL là hình vuông khi và chỉ khi MC^2 = MS.MD. + Cho tam giác ABC có ba góc nhọn và có trực tâm H. Gọi D, E, F lần lượt là chân ba đường cao kẻ từ A, B, C của tam giác ABC. Biết (AB/HF)^2 + (BC/HD)^2 + (CA/HE)^2 = 36, hãy chứng minh rằng tam giác ABC đều.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Hưng Yên (chuyên)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Hưng Yên (chuyên) dành cho thí sinh dự thi vào các lớp chuyên Toán, chuyên Tin; đề gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Hưng Yên (chuyên) : + Cho hình vuông ABCD tâm O, cạnh a. M là điểm di động trên đoạn OB (M khác O và B). Vẽ đường tròn tâm I đi qua M và tiếp xúc với BC tại B, vẽ đường tròn tâm J đi qua M và tiếp xúc với CD tại D. Đường tròn (I) và đường tròn (J) cắt nhau tại điểm thứ hai là N. a) Chứng minh rằng 5 điểm A, N, B, C, D cùng thuộc một đường tròn. b) Chứng minh 3 điểm C, M, N thẳng hàng. [ads] + Cho tam giác MNP vuông cân tại M, MN = a. Lấy điểm D thuộc cạnh MN; điểm E thuộc cạnh NP sao cho chu vi tam giác NDE bằng 2a. Tìm giá trị lớn nhất của diện tích tam giác NDE. + Cho a, b là các số dương thỏa mãn điều kiện (a + b)^3 + 4ab ≤ 12. Chứng minh rằng: 1/(1 + a) + 1/(1 + b) + 2020ab ≤ 2021.
Đề Toán tuyển sinh lớp 10 năm 2020 - 2021 trường chuyên Nguyễn Trãi - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2020 – 2021 trường chuyên Nguyễn Trãi – Hải Dương, đề thi gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2020 – 2021 trường chuyên Nguyễn Trãi – Hải Dương : + Tìm tất cả các số tự nhiên a để a – 2; 4a^2 – 16a + 17; a^2 – 24a + 25 đều là các số nguyên tố. + Cho đường tròn (O;R), hai đường kính AB và CD vuông góc với nhau. Lấy E là điểm bất kỳ nằm trên cung nhỏ AD (E không trung với A và D). Đường thẳng BC cắt OA tại M; đường thẳng EB cắt OD tại N. a) Chứng minh rằng: AM.ED = OM.EA. b) Xác định vị trí điểm E để tổng OM/AM + ON/DN đạt giá trị nhỏ nhất. [ads] + Cho nửa đường tròn (O) đường kính MN. Trên tia đối của tia MO lấy điểm B. Trên tia đối của tia NO lấy điểm C. Từ B và C kẻ các tiếp tuyến với nửa đường tròn (O), chúng cắt nhau tại A, tiếp điểm của nửa đường tròn (O) với BA, AC lần lượt là E, D. Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AH, BD, CE đồng quy.