Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội

Nội dung Đề học sinh năng khiếu lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra học sinh năng khiếu Toán lớp 7 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội Đề kiểm tra học sinh năng khiếu Toán lớp 7 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội Chào các thầy cô giáo và các em học sinh lớp 7, hôm nay chúng ta sẽ cùng tìm hiểu về đề kiểm tra học sinh năng khiếu môn Toán lớp 7 năm học 2021-2022 tại phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 15 tháng 04 năm 2022. Một trong những bài toán trong đề kiểm tra là: Bạn An nghĩ ra một số có ba chữ số, biết số đó chia hết cho 18 và các chữ số của số đó tỉ lệ với ba số 1, 2, 3. Đề bài tiếp tục đưa ra một loạt câu hỏi liên quan đến tam giác vuông và các tính chất của nó, từ việc chứng minh đẳng cao, tìm hình chiếu, đến tính toán số đo góc. Đề cũng đưa ra yêu cầu tìm các số a, b, c nguyên dương thỏa mãn một điều kiện nào đó. Tất cả những câu hỏi đều đòi hỏi sự logic, tư duy tốt và kiến thức vững chắc về Toán. Mong rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết + bảng hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho đoạn thẳng BC cố định, M là trung điểm của đoạn thẳng BC. Vẽ góc CBx sao cho CBx, trên tia Bx lấy điểm A sao cho độ dài đoạn thẳng BM và BA tỉ lệ với 1 và 2. Lấy điểm D bất kì thuộc đoạn thẳng BM. Gọi H và I lần lượt là hình chiếu của B và C trên đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) BH2 + CI2 có giá trị không đổi khi D di chuyển trên đoạn thẳng BM. c) Tia phân giác của góc HIC luôn đi qua một điểm cố định. + Trong một bảng ô vuông gồm có 5×5 ô vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0 hoặc -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau. + Cho đa thức f(x) = 2016.×4 – 32(25.k + 2).x2 + k2 – 100 (với k là số thực dương cho trước). Biết đa thức f(x) có đúng ba nghiệm phân biệt a, b, c (với a < b < c). Tính hiệu của a – c.
Đề học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình.
Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Quốc Oai – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Quốc Oai – Hà Nội : + Trong vòng bán kết giải bóng đá của trường THCS Phù Đổng có 4 đội thi đấu, gọi A là tập hợp các cầu thủ; B là tập hợp các số áo thi đấu. Quy tắc mỗi cầu thủ ứng với số áo của họ có phải là một hàm số không? Vì sao? + Cho ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ AB chứa điểm C, vẽ đoạn thẳng AE vuông góc và bằng AB. Trên nửa mặt phẳng bờ AC chứa điểm B, vẽ đoạn thẳng AD vuông góc và bằng AC. a/ Chứng minh: BD = CE. b/ Trên tia đối của tia MA lấy N sao cho MN = MA. Chứng minh: ADE = CAN. c/ Gọi I là giao điểm của DE và AM. Chứng minh. + Tìm các số tự nhiên x, y thỏa mãn: 2×2 + 3y2 = 77.
Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương : + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. + Chứng minh rằng với n nguyên dương thì 3n+2 – 2n+2 + 3n – 2n chia hết cho 10. + Tìm các cặp số nguyên (x;y) thỏa mãn: x + 2y = 3xy + 3.