Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2018 trường THPT Bình Giang - Hải Dương lần 2

Đề thi thử Toán THPTQG 2018 trường THPT Bình Giang – Hải Dương lần 2 mã đề 163 được biên soạn nhằm kiểm tra chất lượng ôn tập môn Toán của học sinh khối 12 trong quá trình chuẩn bị cho kỳ thi THPT Quốc gia 2018, đề gồm 50 câu hỏi trắc nghiệm khách quan, thí sinh có 90 phút để hoàn thành đề thi, đề có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 : + Sân vận động Sports Hub (Singapore) là sân có mái vòm kỳ vĩ nhất thế giới. Đây là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức ở Singapore năm 2015. Nền sân là một Elíp (E) có trục lớn dài 150m, trục bé dài 90m (Hình 3). Nếu cắt sân vận động theo một mặt phẳng vuông góc với trục lớn của (E) và cắt Elíp (E) ở M, N (Hình 3) thì ta được thiết diện luôn là một phần của hình tròn có tâm I (phần tô đậm trong Hình 4) với MN là một dây cung và góc MIN = 90 độ. Để lắp máy điều hòa không khí cho sân vận động thì các kỹ sư cần tính thể tích phần không gian bên dưới mái che và bên trên mặt sân, coi như mặt sân là một mặt phẳng và thể tích vật liệu làm mái không đáng kể. Hỏi thể tích đó xấp xỉ bao nhiêu? [ads] + Bác Tôm có một cái ao có diện tích 50m2 để nuôi cá. Vụ vừa qua bác nuôi với mật độ 20 con/m2 và thu được tất cả 1,5 tấn cá thành phẩm. Theo kinh nghiệm nuôi cá thu được, bác thấy cứ thả giảm đi 8 con/m2 thì tương ứng sẽ có mỗi con cá thành phẩm thu được tăng thêm 0,5kg. Hỏi vụ tới bác phải mua bao nhiêu con cá giống để đạt được tổng khối lượng cá thành phẩm cao nhất? (Giả sử không có hao hụt trong quá trình nuôi). + Do có nhiều cố gắng trong học kỳ 1 năm học lớp 12, Hoa được bố mẹ cho chọn một phần thưởng dưới 5 triệu đồng. Nhưng Hoa muốn mua một cái Laptop 10 triệu đồng nên bố mẹ đã cho Hoa 5 triệu đồng gửi vào ngân hàng (vào ngày 1 tháng 1 năm 2018) với lãi suất 1% trên tháng, đồng thời ngày đầu tiên mỗi tháng (bắt đầu từ ngày 1 tháng 2 năm 2018) bố mẹ sẽ cho Hoa 300000 đồng và cũng gửi tiền vào ngân hàng với lãi suất 1% trên tháng. Biết hàng tháng Hoa không rút lãi ra và tiền lãi được cộng vào vốn cho tháng sau, chỉ rút vốn vào cuối tháng mới được tính lãi của tháng ấy. Hỏi ngày nào trong các ngày dưới đây là ngày gần nhất với ngày 1 tháng 2 năm 2018 mà bạn Hoa có đủ tiền để mua Laptop?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL lần 4 Toán 12 năm 2018 - 2019 trường Yên Khánh A - Ninh Bình
giới thiệu đến các em đề thi KSCL lần 4 Toán 12 năm 2018 – 2019 trường Yên Khánh A – Ninh Bình, kỳ thi nhằm giúp học sinh khối 12 của nhà trường rèn luyện thường xuyên để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019 sắp diễn ra. Trích dẫn đề thi KSCL lần 4 Toán 12 năm 2018 – 2019 trường Yên Khánh A – Ninh Bình : + Cho vật thể (T) giới hạn bởi hai mặt phẳng x = 0, x = 2. Cắt vật thể (T) bởi mặt phẳng vuông góc với trục Ox tại x (0 ≤ x ≤ 2) ta thu được thiết diện là một hình vuông có cạnh bằng (x + 1)e^x. Thể tích vật thể (T) bằng? [ads] + Cho số phức z thỏa mãn: |z + 2 – i| = 3. Tập hợp các điểm trong mặt phẳng tọa độ (Oxy) biểu diễn số phức w = 1 + z‾ là: A. Đường tròn tâm I(-2;1), bán kính R = 3. B. Đường tròn tâm I(2;-1), bán kính R = 3. C. Đường tròn tâm I(-1;-1), bán kính R = 9. D. Đường tròn tâm I(-1;-1) bán kính R = 3. + Gọi X là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Tính xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1; 2; 3; 4; 5} và ba số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ.
Đề thi thử THPT Quốc gia 2019 môn Toán sở GDĐT Hưng Yên
Chiều thứ Năm ngày 11 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019, nhằm đánh giá chất lượng học tập môn Toán của học sinh khối 12 tại tỉnh, đồng thời phổ biến quy chế thi, hình thức thi và cấu trúc đề môn Toán. Đề thi thử THPT Quốc gia 2019 môn Toán sở GD&ĐT Hưng Yên có mã đề 617 gồm 06 trang với 50 câu trắc nghiệm dạng 04 đáp án A, B, C, D, học sinh có 90 phút để làm bài thi. [ads] Trích dẫn đề thi thử THPT Quốc gia 2019 môn Toán sở GD&ĐT Hưng Yên : + Cho tứ diện ABCD có O là trung điểm của đoạn thẳng nối trung điểm của hai cạnh đối diện và a là số thực dương không đổi. Tập hợp các điểm M trong không gian thỏa mãn hệ thức |MA + MB + MC + MD| = a là? A. Mặt cầu tâm O bán kính r = a/3. B. Mặt cầu tâm O bán kính r = a/4. C. Mặt cầu tâm O bán kính r = a. D. Mặt cầu tâm O bán kính r = a/2. + Đề tuyển học sinh giỏi Toán 12 của một trường THPT tại tỉnh Hưng Yên có 7 học sinh, trong đó có bạn Minh Anh. Lực học của các học sinh là như nhau. Nhà trường chọn ngẫu nhiên 4 học sinh đi thi. Tìm xác suất để Minh Anh được chọn để đi thi. + Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 4cm, chiều cao trong lòng cốc là 12cm đang đựng một lượng nước. Tính thể tích lượng nước trong cốc, biết rằng khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì ở đáy cốc mực nước trùng với đường kính đáy.
Đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Phúc Trạch - Hà Tĩnh
Nằm trong kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia 2019 môn Toán, vừa qua, trường THPT Phúc Trạch (Phúc Trạch, Hương Khê, Hà Tĩnh) đã tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019 lần thứ 2 dành cho toàn bộ học sinh khối 12 của trường, kỳ thi giúp các em tiếp tục rèn luyện, kiểm nghiệm các kiến thức Toán THPT mà các em đã được học. Đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Phúc Trạch – Hà Tĩnh có mã đề 003 gồm 06 trang với 50 câu trắc nghiệm dạng 04 đáp án lựa chọn A, B, C, D, học sinh làm bài thi trong 90 phút, đề thi có đáp án. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Phúc Trạch – Hà Tĩnh : + Khi sản xuất hộp mì tôm các nhà sản xuất luôn để một khoảng trống dưới đáy hộp. Hình vẽ dưới mô tả cấu trúc của hộp mì tôm. Thớ mì tôm có dạng hình trụ, hộp mì có dạng hình nón cụt được cắt ra bởi hình nón có chiều cao 9cm và bán kính đáy 6cm. Nhà sản xuất tìm cách sao cho thớ mì tôm có được thể tích lớn nhất vì mục đích thu hút khách hàng. Tìm thể tích lớn nhất đó. [ads] + Một trang trại rau sạch mỗi ngày thu hoạch được một tấn rau. Mỗi ngày, nếu bán rau với giá 30000 đồng/kg thì hết sạch rau, nếu giá bán cứ tăng thêm 1000 đồng/kg thì số rau thừa lại tăng thêm 20kg. Số rau thừa này được thu mua làm thức ăn chăn nuôi với giá 2000 đồng/kg. Hỏi số tiền bán rau nhiều nhất mà trang trại có thể thu được mỗi ngày là bao nhiêu? + Giải bóng chuyền quốc tế VTV Cup có 12 đội tham gia, trong đó có 3 đội Việt Nam. Ban tổ chức bốc thăm ngẫu nhiên để chia thành 3 bảng đấu, mỗi bảng 4 đội. Tính xác suất để 3 đội của Việt Nam cùng nằm ở một bảng đấu.
Đề thi thử THPT Quốc gia 2019 môn Toán trường THPT chuyên Hà Tĩnh
Dựa trên kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán năm 2019 do Bộ Giáo dục và Đào tạo tổ chức, vừa qua, trường THPT chuyên Hà Tĩnh đã tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019 lần thứ nhất. Kỳ thi nhằm giúp phổ biến quy chế thi và cấu trúc đề môn Toán đến học sinh khối 12 của trường, qua đây, nhà trường và giáo viên bộ môn Toán sẽ có cái nhìn chính xác nhất về khả năng của từng học sinh, để vạch ra phương án ôn tập phù hợp nhất cho giai đoạn còn lại. Đề thi thử THPT Quốc gia 2019 môn Toán trường THPT chuyên Hà Tĩnh có mã đề 001, đề gồm 06 trang với 50 câu trắc nghiệm dạng 04 đáp án A, B, C, D, học sinh có 90 phút để hoàn thành bài thi Toán, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử THPT Quốc gia 2019 môn Toán trường THPT chuyên Hà Tĩnh : + Ông An có một khu đất hình elip với độ dài trục lớn 10 m và độ dài trục bé 8 m. Ông An muốn chia khu đất thành hai phần, phần thứ nhất là một hình chữ nhật nội tiếp elip dùng để xây bể cá cảnh và phần còn lại dùng để trồng hoa. Biết chi phí xây bể cá là 1000000 đồng trên 1m2 và chi phí trồng hoa là 200000 đồng trên 1m2. Hỏi ông An có thể thiết kế xây dựng như trên với tổng chi phí thấp nhất gần nhất với số nào sau đây? [ads] + Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình bên. Tìm khẳng định đúng? A. Hàm số có giá trị nhỏ nhất bằng 0 và giá trị lớn nhất bằng 1. B. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = -1. C. Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. D. Hàm số có đúng một cực trị. + Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy 2, 4, n (n > 3) điểm phân biệt (các điểm không trùng với các đỉnh của tam giác). Tìm n biết rằng số tam giác có các đỉnh thuộc n + 6 điểm đã cho là 247.