Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm số thập phân

Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm số thập phân Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm về chuyên đề số thập phân. Trọn bộ tài liệu đã được chọn lọc và phân loại theo các dạng toán, từ cơ bản đến nâng cao, giúp các em nắm vững kiến thức một cách dễ dàng.

A. TÓM TẮT LÝ THUYẾT
1. Số thập phân:
- Phân số thập phân là phân số có mẫu số là lũy thừa của 10.
- Số thập phân dương được viết dưới dạng số thập phân dương.
- Số thập phân âm được viết dưới dạng số thập phân âm.
- Số thập phân gồm hai phần: phần số nguyên viết bên trái dấu phẩy và phần thập phân viết bên phải dấu phẩy.

2. Số đối của một số thập phân:
Hai số thập phân gọi là đối nhau khi chúng biểu diễn hai phân số thập phân đối nhau.

3. So sánh hai số thập phân:
Để so sánh hai số thập phân, ta có thể sử dụng quy tắc so sánh hai số nguyên. Ngoài ra, ta cũng có thể so sánh bằng cách so sánh hai phân số thập phân tương ứng.

B. BÀI TẬP TRẮC NGHIỆM
- File WORD (dành cho quý thầy, cô) chứa các bài tập trắc nghiệm giúp các em ôn tập và kiểm tra kiến thức của mình.

Tài liệu này hi vọng sẽ giúp các em học sinh lớp 6 có thêm nguồn tư liệu hữu ích để tự học và ôn tập môn Toán một cách hiệu quả. Hãy cùng Sytu chinh phục thử thách và đạt được kết quả cao trong học tập!

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Số nguyên âm, số nguyên dương, tập hợp các số nguyên. – Các số tự nhiên (khác 0): 1, 2, 3, 4, 5 … được gọi là các số nguyên dương. – Các số -1, -2, -3 …. gọi là các số nguyên âm. – Tập hợp các số nguyên gồm các số nguyên âm, số 0 và các số nguyên dương. Kí hiệu là tập Z. Chú ý: – Số 0 không là số nguyên âm cũng không là số nguyên dương. – Đôi khi ta còn viết dấu “+” ngay trước số nguyên dương. Ví dụ số 6 còn được viết +6 (đọc là dương sáu). 2. Thứ tự trong tập số nguyên. a. Trục số. – Ta biểu diễn các số 1, 2, 3 …. và các số nguyên âm -1, -2, -3 … khi đó ta được một trục số gốc O (Hình 1). – Chiều từ trái sang phải là chiều dương, chiều ngược lại là chiều âm. – Điểm biểu diễn số nguyên a gọi là điểm a. – Cho hai số nguyên a, b. Trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b, hay a b. Chú ý : Có thể có hình vẽ như Hình 2. b. Thứ tự các số nguyên. – Mọi số nguyên âm đều nhỏ hơn 0, do đó đều nhỏ hơn mọi số nguyên dương. – Nếu a và b là hai số nguyên dương và a b thì a b. Chú ý: Kí hiệu a b có nghĩa là “a b hoặc a b”. B. BÀI TẬP TRẮC NGHIỆM I. MỨC ĐỘ NHẬN BIẾT. II. MỨC ĐỘ THÔNG HIỂU. III. MỨC ĐỘ VẬN DỤNG. IV. MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Bội chung. * Bội chung của hai hay nhiều số là bội của tất cả các số đó. * Kí hiệu tập hợp các bội chung của a và b là BC a b. * Cách tìm bội chung của hai số a và b: Viết tập hợp các bội của a và bội của b B a B b. Tìm những phần tử chung của B a và B b. 2. Bội chung nhỏ nhất. * Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. * Bội chung nhỏ nhất của a và b kí hiệu là BC a b. * Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: Bước 1: Phân tích mỗi số ra thừa số nguyên tố. Bước 2: Chọn ra các thừa số nguyên tố chung và riêng. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Muốn tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. * Chú ý: Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó. Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy. Tất cả các bội chung của a và b đều là bội của BC a b. Với mọi số tự nhiên a và b (khác 0), ta có: BCNN a a BCNN a b BCNN a b. 3. Các dạng toán thường gặp. Dạng 1. Tìm bội chung, bội chung nhỏ nhất của hai hay nhiều số. * Để nhận biết một số là bội chung của hai số, ta kiểm tra xem số này có chia hết cho hai số đó hay không? * Để viết tập hợp các bội chung của hai hay nhiều số, ta viết tập hợp các bội của mỗi số rồi tìm giao của các tập hợp đó. * Thực hiện quy tắc “ba bước” để tìm BCNN của hai hay nhiều số đó là: Bước 1 : Phân tích mỗi số ra thừa số nguyên tố. Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng. Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Có thể nhẩm BCNN của hai hay nhiều số bằng cách nhân số lớn nhất lần lượt với 1 2 3 … cho đến khi được kết quả là một số chia hết cho các số còn lại. Dạng 2. Bài toán đưa về việc tìm BCNN của hai hay nhiều số. Phân tích đề bài, suy luận để đưa về việc tìm BCNN của hai hay nhiều số. Dạng 3. Bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Phân tích đề bài, suy luận để đưa về việc tìm bội chung của hai hay nhiều số cho trước. Tìm BCNN của các số đó. Tìm các bội của BCNN này. Chọn trong số đó các bội thỏa mãn điều kiện đã cho. Dạng 4. Vận dụng BCNN để tìm mẫu chung của hai hay nhiều phân số. Để quy đồng mẫu hai phân số ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là BCNN của hai mẫu. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số nguyên tố
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số nguyên tố, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Số nguyên tố và hợp số. + Số nguyên tố là số tự nhiên lớn hơn 1 chỉ có hai ước là một và chính nó. + Hợp số là số tự nhiên lớn hơn 1 có nhiều hơn hai ước. 2. Phân tích một số ra thừa số nguyên tố. a) Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố. b) Cách phân tích một số ra thừa số nguyên tố: Phân tích theo cột dọc hoặc dùng sơ đồ cây. 3. Các dạng toán thường gặp. Dạng 1: Nhận biết số nguyên tố. Phương pháp: + Căn cứ vào định nghĩa số nguyên tố. + Căn cứ vào các dấu hiệu chia hết. Dạng 2: Nhận biết hợp số. Phương pháp: + Căn cứ vào định nghĩa hợp số. + Căn cứ vào các dấu hiệu chia hết. Dạng 3: Phân tích một số ra thừa số nguyên tố. Phương pháp: + Căn cứ vào định nghĩa phân tích một số ra thừa số nguyên tố. + Căn cứ vào các dấu hiệu chia hết để phân tích một số ra thừa số nguyên tố. + Vận dụng phân tích một số ra thừa số nguyên tố để giải các bài toán có liên quan đến ước số. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Nhận biết số nguyên tố. Dạng 2: Nhận biết hợp số. Dạng 3: Phân tích một số ra thừa số nguyên tố.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề dấu hiệu chia hết
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề dấu hiệu chia hết, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Dấu hiệu chia hết cho 2 3 5 9. + Dấu hiệu chia hết cho 2: Các số có chữ số tận cùng chia hết cho 2 (hoặc các chữ số tận cùng là số chẵn). + Dấu hiệu chia hết cho 3: Tổng các chữ số chia hết cho 3. + Dấu hiệu chia hết cho 5: Có chữ số tận cùng là 0 hoặc 5. + Dấu hiệu chia hết cho 9: Tổng các chữ số chia hết cho 9. 2. Các dạng toán thường gặp. Dạng 1: Nhận biết dấu hiệu một số (một tổng hoặc một hiệu) chia hết cho 2 3 9 5. Phương pháp: Ta sử dụng: Dấu hiệu chia hết của các số. Dạng 2: Tìm điều kiện để một số (một tổng) chia hết cho 2 3 9 5. Phương pháp: Sử dụng các dấu hiệu chia hết cho 2 3 9 5. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Nhận biết dấu hiệu một số (một tổng hoặc một hiệu) chia hết cho 2 3 9 5. Dạng 2: Tìm điều kiện để một số (một tổng) chia hết cho 2, 3, 5, 9.