Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm học 2018 - 2019 sở GD và ĐT Quảng Nam

Nhằm giúp các em học sinh khối 10 có thêm đề thi ôn tập chuẩn bị cho kỳ thi học kỳ 1 môn Toán 10, giới thiệu đến các em nội dung đề thi HK1 Toán 10 năm học 2018 – 2019 sở GD và ĐT Quảng Nam, đề có mã 101 được biên soạn theo hình thức kết hợp giữa trắc nghiệm khách quan và tự luận theo tỉ lệ điểm 5 – 5, trong đó phần trắc nghiệm gồm 15 câu, phần tự luận gồm 03 câu, học sinh làm bài thi trong thời gian 60 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án và lời giải chi tiết đầy đủ 24 mã đề 101 → 124. Trích dẫn đề thi HK1 Toán 10 năm học 2018 – 2019 sở GD và ĐT Quảng Nam : + Cho tam giác ABC, gọi M, N lần lượt là trung điểm của hai cạnh AB và AC. Mệnh đề nào dưới đây đúng? A. MN và AB cùng phương. B. MN và AC cùng phương. C. MN và BC cùng phương. D. MN và BN cùng phương. [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. 15 là số nguyên tố. B. 5 là số chẵn. C. 5 là số vô tỉ. D. 15 chia hết cho 3. + Cho hình thang ABCD vuông tại A và D có AB = 6a, CD = 3a và AD = 3a. Gọi M là điểm thuộc cạnh AD sao cho MA = a. Tính T = (MB + 2MC).CB.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Đề thi học kỳ 1 Toán lớp 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán lớp 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Viết phương trình đường thẳng d biết d đi qua điểm M(2;3) và song song với đường thẳng delta: y = 3x + 1. + Cho tam giác ABC có A(2;3); B(-1;-1); C(6;0). a) Tính độ dài AB; AC; BC suy ra tam giác ABC vuông cân. b) Tìm tọa độ điểm M thỏa MA + MB + MC = BC. + Cho tam giác ABC có AB = 5a, AC = 7a, góc A bằng 120 độ. Tính BC và diện tích tam giác ABC. File WORD (dành cho quý thầy, cô):
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Văn Cừ TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Văn Cừ TP HCM Bản PDF Đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM gồm 02 trang với 20 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM : + Xác định parabol (P): y = x^2 + bx + c biết hoành độ đỉnh bằng 2 và đi qua điểm A(-2;-3). + Tìm tập xác định của hàm số f(x) = (2 + x)/(-3x^2). + Cho (P): y = -x^2 – 4x + 3. Tìm tọa độ đỉnh của parabol. File WORD (dành cho quý thầy, cô):
Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm học 2019 2020 trường Việt Úc TP HCM
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm học 2019 2020 trường Việt Úc TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi cuối học kì 1 Toán lớp 10 năm học 2019 – 2020 trường Việt Úc – TP HCM; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang chấm điểm. Ma trận đề thi cuối học kì 1 Toán lớp 10 năm học 2019 – 2020 trường Việt Úc – TP HCM: File WORD (dành cho quý thầy, cô):
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Tạ Quang Bửu Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Tạ Quang Bửu Hà Nội Bản PDF Thứ Sáu ngày 06 tháng 12 năm 2019, trường THCS và THPT Tạ Quang Bửu, thành phố Hà Nội tổ chức kiểm tra chất lượng cuối học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường Tạ Quang Bửu – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm có 01 trang với 05 bài toán, học sinh có 90 phút để hoàn thành bài thi. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường Tạ Quang Bửu – Hà Nội : + Cho hàm số y = -x^2 + 4x + 5 có đồ thị (P). a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm k để phương trình |-x^2 + 4x + 5| = k – 2 có 4 nghiệm phân biệt. [ads] + Cho phương trình (m – 2)x^2 + (2m – 1)x + m = 0. a) Giải phương trình khi m = 0. b) Với giá trị nào của m thì phương trình có hai nghiệm x1, x2 thỏa mãn x1 + x2 = -3. + Trong hệ tọa độ Oxy cho ba điểm A(3;-2), B(5;2), C(0;-3). a) Chứng minh ba điểm A, B, C không thẳng hàng. Tính BC. b) Tính AB.AC và cos ABC. c) Tìm tọa độ điểm D sao cho DA – 2DB = 0. d) Tìm tọa độ điểm M trên trục Oy sao cho |MB + MC| đạt giá trị nhỏ nhất.