Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề diện tích đa giác

Nội dung Chuyên đề diện tích đa giác Bản PDF - Nội dung bài viết Chuyên đề diện tích đa giácTóm tắt lý thuyết:Bài tập và các dạng toán:A. Các dạng bài minh họa:B. Phiếu bài tự luyện: Chuyên đề diện tích đa giác Tài liệu này bao gồm 06 trang, cung cấp lý thuyết cơ bản về cách tính diện tích đa giác, bao gồm trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán phổ biến. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao về chuyên đề diện tích đa giác, kèm theo đáp án và lời giải chi tiết. Đây là tài liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết: Để tính diện tích đa giác, chúng ta thường chia đa giác đó thành các tam giác hoặc tứ giác để tính toán. Sau đó, tính tổng các diện tích tam giác hoặc tứ giác đó để có diện tích của đa giác ban đầu. Hoặc có thể tạo ra một đa giác mới chứa đa giác ban đầu và tính hiệu các diện tích để đạt được kết quả cuối cùng. Bài tập và các dạng toán: A. Các dạng bài minh họa: Dạng 1: Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2: Tính diện tích của đa giác bất kỳ. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3: Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. Phiếu bài tự luyện: Bên cạnh đó, tài liệu cũng cung cấp phiếu bài tự luyện cho học sinh, giúp họ ôn tập và rèn luyện kỹ năng tính toán diện tích đa giác một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề cương cuối học kỳ 2 Toán 8 năm 2023 - 2024 trường Việt Anh 2 - Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kỳ 2 môn Toán 8 năm học 2023 – 2024 trường Trung – Tiểu học Việt Anh 2, tỉnh Bình Dương. A. TRỌNG TÂM KIẾN THỨC. B. CÁC DẠNG BÀI TẬP. C. ĐỀ MINH HỌA.
Đề cương học kỳ 2 Toán 8 năm 2023 - 2024 trường THCS Hoàng Hoa Thám - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kỳ 2 môn Toán 8 năm học 2023 – 2024 trường THCS Hoàng Hoa Thám, quận Ba Đình, thành phố Hà Nội. I. KIẾN THỨC TRỌNG TÂM 1. Đại số: – Chương VI. Phân thức đại số. – Chương VII: Phương trình bậc nhất một ẩn và hàm số bậc nhất. 2. Hình học: – Chương IX. Tam giác đồng dạng. – Chương X: Một số hình khối trong thực tiễn. II. CÁC DẠNG BÀI TẬP THAM KHẢO
Đề cương học kì 2 Toán 8 năm 2023 - 2024 trường THCS Phan Chu Trinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Phan Chu Trinh, quận Ba Đình, thành phố Hà Nội. Giới hạn chương trình: Hết Tuần 30. * Đại số : – Phân thức đại số. – Phương trình, giải bài toán bằng cách lập phương trình. – Hàm số bậc nhất và đồ thị của hàm số bậc nhất. – Kết quả có thể và kết quả thuận lợi. – Cách tính xác suất của biến cố bằng tỉ số. * Hình học : – Tam giác đồng dạng. – Định lý Pytago và ứng dụng. – Các TH đồng dạng của hai tam giác vuông. – Hình đồng dạng. – Hình chóp tam giác đều.
Ôn tập cuối học kì 2 Toán 8 năm 2023 - 2024 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn nội dung ôn tập kiểm tra cuối học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội. PHẦN I : NỘI DUNG KIẾN THỨC CẦN ÔN TẬP. 1. Các đơn vị kiến thức đã học từ tuần 19 đến hết tuần 31. 2. Một số câu hỏi trọng tâm. Câu 1. Nêu cách tính xác suất thực nghiệm của biến cố ngẫu nhiên trong trò chơi tung đồng xu, trò chơi vòng quay số và trong trò chơi chọn ngẫu nhiên một đối tượng từ một nhóm đối tượng. Câu 2. Thế nào là phương trình, nghiệm của phương trình, giải phương trình? Câu 3. Phương trình bậc nhất một ẩn có dạng nào? Cách giải phương trình bậc nhất một ẩn và ứng dụng của phương trình bậc nhất một ẩn. Câu 4. Phát biểu ba trường hợp đồng dạng của tam giác thường, các trường hợp đồng dạng của tam giác vuông? Câu 5. Thế nào là hình đồng dạng phối cảnh? Câu 6. Hai tam giác bằng nhau có là hai hình đồng dạng không? PHẦN II : MỘT SỐ DẠNG BÀI TẬP MINH HỌA.