Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu hàm số lượng giác và phương trình lượng giác - Lư Sĩ Pháp

Nhằm cung cấp tài liệu tự học chuyên đề hàm số lượng giác và phương trình lượng giác (Đại số và Giải tích 11 chương 1), thầy Lư Sĩ Pháp biên soạn và giới thiệu tài liệu hàm số lượng giác và phương trình lượng giác. Tài liệu gồm 64 trang với nội dung được chia thành ba phần: + Phần 1. Kiến thức cần nắm. + Phần 2. Dạng bài tập có hướng dẫn giải và bài tập đề nghị. + Phần 3. Phần trắc nghiệm có đáp án. Khái quát nội dung tài liệu hàm số lượng giác và phương trình lượng giác – Lư Sĩ Pháp: ÔN TẬP CÔNG THỨC LƯỢNG GIÁC. BÀI 1 . HÀM SỐ LƯỢNG GIÁC. Dạng 1 . Tập xác định của hàm số. Hàm số xác định với một điều kiện. Hàm số xác định bởi hai hay nhiều điều kiện. Dạng 2 . Xét tính chẵn, lẻ của hàm số. Tìm tập xác định D của hàm số, kiểm chứng D là tập đối xứng hay không. Tính f(-x) và so sánh với f(x). Dạng 3 . Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Dạng 4 . Chu kì tuần hoàn của hàm số. [ads] BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. Dạng 1 . Giải phương trình lượng giác cơ bản. Các công thức nghiệm của bốn phương trình lượng giác cơ bản. Cung đối và cung bù. Dạng 2 . Tìm nghiệm của phương trình trên một khoảng, đoạn. Giải phương trình và tìm nghiệm thỏa khoảng đề bài cho. BÀI 3 . MỘT SỐ DẠNG PHƯƠNG TRÌNH LƯỢNG GIÁC ĐƠN GIẢN THƯỜNG GẶP. Dạng 1 . Giải phương trình bậc nhất đối với một hàm số lượng giác. Phương trình dạng at + b = 0 (a khác 0). Một số phương trình biến đổi đưa về phương trình bậc nhất. Từ phương trình đã cho đưa về phương trình lượng giác cơ bản và giải. Dạng 2 . Giải phương trình bậc hai đối với một hàm số lượng giác. Phương trình dạng at2 + bt + c = 0 (a khác 0). Một số phương trình biến đổi đưa về phương trình bậc hai. Từ phương trình đã cho đưa về phương trình lượng giác cơ bản và giải. Lưu ý điều kiện của bài toán (nếu có). Dạng 3 . Phương trình bậc nhất đối với sin và cos. Phương trình có dạng asinx + bcosx + c = 0 (a^2 + b^2 khác 0). Dạng 4 . Phương trình bậc nhất bậc hai đối với sin và cos. Nắm phương pháp giải. Kiểm tra điều kiện của phương trình. ÔN TẬP CHƯƠNG I. BÀI TẬP TRẮC NGHIỆM: 166 câu hỏi và bài tập trắc nghiệm hàm số lượng giác và phương trình lượng giác có đáp án.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề hàm số lượng giác
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hàm số lượng giác, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Tính tuần hoàn của hàm số lượng giác. 3) Tính chẵn lẻ của hàm số lượng giác. 4) Sự biến thiên và đồ thị các hàm số lượng giác. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1: Tập xác định và tập giá trị của hàm số lượng giác. Dạng 2: Tính chẵn lẻ của hàm số lượng giác. Dạng 3: Chu kì của hàm số lượng giác. Dạng 4: Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Tổng ôn chuyên đề cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 42 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chuyên đề cung và góc lượng giác, công thức lượng giác, có đáp án và lời giải chi tiết; giúp học sinh lớp 10 tổng ôn chương trình Đại số 10 chương 6. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Dấu của hàm số lượng giác. 3) Mối quan hệ giữa các cung lượng giác đặc biệt. 5) Công thức góc nhân đôi, nhân ba. 6) Công thức hạ bậc hai, bậc ba. 7) Công thức biến đổi tích sang tổng và ngược lại. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Hoàng Việt
Tài liệu gồm 86 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm (có đáp án) chuyên đề hàm số lượng giác và phương trình lượng giác (Toán 11 phần Đại số và Giải tích chương 1). Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. §1 – HÀM SỐ LƯỢNG GIÁC 1. A KIẾN THỨC CẦN NHỚ 1. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 2. + Dạng 1. Tìm tập xác định của hàm số lượng giác 2. + Dạng 2. Tính chẵn lẻ của hàm số 6. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 7. C BÀI TẬP TRẮC NGHIỆM 12. §2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 19. A KIẾN THỨC CẦN NHỚ 19. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 21. + Dạng 1. Giải các phương trình lượng giác cơ bản 21. + Dạng 2. Giải các phương trình lượng giác dạng mở rộng 23. + Dạng 3. Giải các phương trình lượng giác có điều kiện xác định 25. + Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước 27. C BÀI TẬP TRẮC NGHIỆM 29. §3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 37. A KIẾN THỨC CẦN NHỚ 37. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 38. + Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác 38. + Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác 41. + Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx 45. + Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx 48. + Dạng 5. Phương trình chứa sin x ± cos x và sin x · cos x 50. C BÀI TẬP TRẮC NGHIỆM 51. §4 – MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC 59. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 59. + Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác 59. + Dạng 2. Biến đổi asinx + bcosx 62. + Dạng 3. Biến đổi đưa về phương trình tích 64. + Dạng 4. Một số bài toán biện luận theo tham số 67. B BÀI TẬP TỰ LUYỆN 70. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 73. A Đề số 1 73. B Đề số 2 79. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 83.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm + tự luận chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Toán 11 phần Đại số và Giải tích chương 1. Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. §0 – Công thức lượng giác cần nhớ 1. §1 – HÀM SỐ LƯỢNG GIÁC 3. A KIẾN THỨC CẦN NHỚ 3. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 4. + Dạng 1. Tìm tập xác định của hàm số lượng giác 4. + Dạng 2. Tính chẵn lẻ của hàm số 7. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 8. C BÀI TẬP TRẮC NGHIỆM 13. §2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 17. A KIẾN THỨC CẦN NHỚ 17. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 19. + Dạng 1. Giải các phương trình lượng giác cơ bản 19. + Dạng 2. Giải các phương trình lượng giác dạng mở rộng 21. + Dạng 3. Giải các phương trình lượng giác có điều kiện xác định 22. + Dạng 4. Giải các phương trình lượng giác trên khoảng (a;b) cho trước 24. C BÀI TẬP TRẮC NGHIỆM 26. §3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 29. A KIẾN THỨC CẦN NHỚ 29. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 30. + Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác 30. + Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác 33. + Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx 37. + Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx 41. + Dạng 5. Phương trình chứa sinx ± cosx và sinx · cosx 43. C BÀI TẬP TRẮC NGHIỆM 45. §4 – MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC 48. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 48. + Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác 48. + Dạng 2. Biến đổi asinx + bcosx 49. + Dạng 3. Biến đổi đưa về phương trình tích 50. + Dạng 4. Một số bài toán biện luận theo tham số 51. B BÀI TẬP TỰ LUYỆN 55. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 57. A Đề số 1 57. B Đề số 2 60. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 63.